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Abstract

Higher-order networks, which model interactions among groups of entities of an
arbitrary number, emerged as a generalization of simple networks with pairwise
interactions. Their analysis requires the development of stochastic models that can
capture complex spatial, topological, and temporal dependencies. This thesis presents
new probabilistic frameworks for modeling such networks grounded in point process
theory.

The first contribution establishes a Poisson approximation result for the number of
degree-k nodes in weighted random connection models. Nodes are embedded in Rd via
a weighted Poisson point process, and edges are formed based on both spatial proximity
and node weights. We identify scaling regimes under which the spatial distribution
of degree-k nodes converges in Kantorovich–Rubinstein distance to a homogeneous
Poisson point process.

In the second part, we analyze the age-dependent random connection model, a
spatial network model viewed as a higher-order network. Limit theorems are shown for
higher-order degree distributions, Betti numbers, and edge counts. Then, the model
is fitted to a real-world collaboration network, and hypothesis tests are conducted to
assess how well the model captures the topological features of the network.

Next, the framework is extended to hypergraphs. Both network nodes and hyper-
edges are modeled as weighted Poisson point processes, and hyperedges are formed
based on joint connections to points representing the hyperedges. In this model, we
prove normal and stable limit theorems for simplex counts, Betti numbers, and edge
statistics. We also present a simulation study and an application to a collaboration
network extracted from the arXiv dataset, comparing the model with real-world
hypergraphs.

Finally, a dynamic version of the hypergraph model is proposed, where we equip
the vertices with birth-death dynamics. We establish two functional limit theorems for
the edge-count process in the model: for light-tailed degree distributions, it converges
to a Gaussian process with Matérn-type covariance. In heavy-tailed regimes, the edge
count process converges to a non-Markovian, non-Lévy stable process. These results
constitute the first dynamic limit theorems for spatial higher-order networks.





Resumé

Højereordens netværk, som modellerer interaktioner mellem grupper af et vilkårligt
antal enheder, er opstået som en generalisering af simple netværk med parvise inter-
aktioner. Deres analyse kræver udvikling af stokastiske modeller, der kan indfange
rumlige, topologiske og tidsmæssige afhængigheder. Denne afhandling præsenterer
nye sandsynlighedsteoretiske rammer for modellering af sådanne netværk, baseret på
punktproces-teori.

Det første bidrag etablerer et Poisson-approksimationresultat for antallet af noder
med grad-k i vægtede tilfældige forbindelsesmodeller. Noderne placeres i Rd via
en vægtet Poisson-punktproces, og kanter dannes ud fra både rumlig nærhed og
nodernes vægte. Vi identificerer skaleringsregimer, hvorunder den rumlige fordeling af
grad-k-noder konvergerer i Kantorovich–Rubinstein-afstand til en homogen Poisson-
punktproces.

I den anden del analyserer vi den aldersafhængige tilfældige forbindelsesmodel, en
rumlig netværksmodel, der betragtes som et højereordens netværk. Grænsesætninger
vises for højereordens gradfordelinger, Betti-tal og antallet af kanter. Herefter tilpasses
modellen til et reelt samarbejdsnetværk, og hypotesetest udføres for at undersøge,
hvor godt modellen fanger de topologiske træk i netværket.

Dernæst udvides rammen til hypergrafer. Både netværksnoder og hyperkanter
modelleres som vægtede Poisson-punktprocesser, og hyperkanter dannes på baggrund
af fælles forbindelser til punkter, der repræsenterer hyperkanterne. I denne model
beviser vi normale og stabile grænsesætninger for antallet af simplekser, Betti-tal og
kantstatistikker. Vi præsenterer også en simuleringsundersøgelse og en anvendelse på
et samarbejdsnetværk udtrukket fra arXiv-datasættet for at sammenligne modellen
med virkelige hypergrafer.

Afslutningsvis foreslås en dynamisk version af hypergrafmodellen, hvor vi udstyrer
toppunkterne med fødsels-døds-dynamik. Vi opstiller to funktionelle grænsesætninger
for kanttællingsprocessen i modellen: for letthalegradfordelinger konvergerer den mod
en Gaussisk proces med Matérn-lignende kovarians. I tunghaleregimer konvergerer
kanttællingsprocessen mod en ikke-Markovsk, ikke-Lévy stabil proces. Disse resultater
udgør de første dynamiske grænsesætninger for rumlige højereordens netværk.
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Introduction

My PhD thesis presents the results of the research conducted under the project entitled
“Stochastic models for higher-order networks: Point processes and topological data
analysis”, which was financed by the Danish Data Science Academy (DDSA) PhD
Fellowship grant with grant number DDSA-PhD-2022-008.

This thesis investigates stochastic point processes and topological structures in
random networks. The research focuses on both theoretical and applied aspects,
addressing the following major topics.

• We study spatially embedded random graphs, with particular emphasis on
weighted and age-dependent random connection models. Our analysis covers
generalized degree distributions, edge and simplex counts, and Betti numbers.
In particular, we investigate the influence of heavy-tailed distributions on these
network characteristics.

• We apply tools from topological data analysis (TDA), such as Betti numbers and
simplicial complexes, to capture higher-order connectivity of random networks.

• The theoretical results are complemented by simulations and empirical studies
on collaboration networks, demonstrating the practical relevance of the models
developed.

The thesis is based on the following four papers.

Paper A Poisson approximation of fixed-degree nodes in weighted random connection
models. Published in Stochastic Processes and their Applications [51].

Paper B On the topology of higher-order age-dependent random connection models.
Published in Methodology and Computing in Applied Probability [49].

Paper C Random connection hypergraphs. Preprint available at arXiv [19].

Paper D Functional limit theorems for edge counts in dynamic random connection
hypergraphs. Preprint available at arXiv [52].

These research papers have been included in this thesis without significant modifica-
tions compared to their published versions. The specific changes, apart from minor
typographical corrections and formatting adjustments made to the papers, are listed
in Section Errata.

https://www.sciencedirect.com/science/article/pii/S0304414925000341
https://link.springer.com/article/10.1007/s11009-025-10173-7
https://arxiv.org/abs/2407.16334v2
https://arxiv.org/abs/2507.16270


Introduction

The thesis is organized as follows.

• The Introduction introduces the overall topic, and establishes the main mathe-
matical framework necessary for understanding the results presented in this thesis.
Then, the included papers are summarized, highlighting their main contributions
and findings. This part of the thesis intentionally overlaps with the included
papers as they address the same model, results, and background material. Next,
an overview of the computational framework is provided, which was developed
for simulating random connection models and simplicial complexes. The last
part of the Introduction discusses the Boolean model, which serves as a simple
model to demonstrate the proof techniques applied throughout several of the
included papers.

• Paper A presents the paper titled Poisson approximation of fixed-degree nodes
in weighted random connection models [51], a joint work with Christian Hirsch,
Benedikt Jahnel, and Sanjoy K. Jhawar. In this paper, we investigate the Poisson
approximation of degree-k vertices in weighted random connection networks.

• Paper B contains the paper titled On the topology of higher-order age-dependent
random connection models [49], in which we study the age-dependent random
connection model viewed as a higher-order network. This paper is a joint work
with Christian Hirsch.

• Paper C comprises the paper Random connection hypergraphs [19], which was
written jointly with Christian Hirsch, Moritz Otto, and Morten Brun. This
paper presents a novel hypergraph model that incorporates both theoretical and
computational results.

• Finally, Paper D consists of the paper Functional limit theorems for edge counts
in random connection hypergraphs [52], which is a result of collaboration with
Christian Hirsch and Benedikt Jahnel. The primary focus of this paper is on
a functional normal and a functional stable limit theorem derived for random
connection hypergraphs.

1 Motivation
Complex systems are characterized by behaviors that cannot be directly inferred
from their components’ properties, i.e., the relationships between their components
are crucial for their understanding. Simple networks are mathematical models to
represent these relationships, where vertices represent components and the interactions
between them are modeled by edges. Although these traditional network models have
been successful in explaining properties emerging from pairwise interactions, they
fall short in helping to understand group interactions seen in, among others, neural
networks, scientific collaborations, and chemical reactions. This drawback is visualized
in Figure 1, which illustrates a collaboration network where multibody interactions
naturally arise.

2



1. Motivation

(a) Three pairwise collabo-
rations

(b) A single three-way col-
laboration

Figure 1: In a collaboration network, vertices represent scientists or authors, and
there is a connection between them whenever they have a common publication
together. The system can be modeled using the same graphical representation if
the three authors have three publications, each written by a pair of authors (left),
or if the three authors have a single, common publication (right). In this case,
the simple graphical representation leads to information loss.

To overcome this limitation, two related concepts have been introduced: hypergraphs
and higher-order networks, the latter being a subset of the former. Hypergraphs are
generalizations of simple networks, where edges, called hyperedges can connect more
than two vertices. Higher-order networks are a special case of hypergraphs in which each
subset of vertices in a hyperedge is itself connected by a hyperedge. This means that
higher-order networks are represented as simplicial complexes, which are combinatorial
structures that generalize graphs to higher dimensions, and will be defined in Section 2.

Although higher-order networks have been studied for many years [25, 53], only a
few papers discuss the higher-order structure of these systems using simplicial complex
models. Despite a range of studies in this field, the structure and dynamics of higher-
order interactions are still not well understood. The aim of this thesis is to develop,
describe, and simulate stochastic higher-order network models. The modeling phase
relies on the theory of stochastic point processes and random simplicial complexes,
described in [76, 106], and [11]. Due to the complexity of the mathematics involved,
most of our results are proved in the large network limit.

In two of the papers included in this thesis, Papers B and C, we relate our models to
real-world collaboration networks, where higher-order relationships naturally arise [6].
In these networks, nodes represent scientists, while their higher-order interactions can
be inferred from common publications they authored [65]. The dataset used for this
research is the arXiv database [1], which at the time of the study contained a diverse
set of approximately 2.5 million published and unpublished documents in various
disciplines. To compare our models with these data, we first conducted simulation
studies of our model to examine whether our results derived in the large network
limit are valid in finite-size networks. As simulating large networks is computationally
expensive, efficient algorithms had to be developed, which are detailed in Section 4.
After fitting the model parameters to the data, we applied statistical tests to examine
how well our model describes the various datasets.

3



Introduction

2 Mathematical framework
This section provides an overview of the main mathematical concepts and tools used
throughout this thesis. It covers the theory of point processes, higher-order networks,
stable distributions, and functional convergence of stochastic processes. These topics
form the foundation for understanding the models and results presented in the included
papers.

Poisson point processes

The definitions and properties presented in this section are based on [66].
A point process is a random collection of points in a mathematical space, often

used to model random events. In our context, point processes provide the probabilistic
foundation for our network models. Vertices are sampled as random points, and edges
are drawn based on their locations and the marks assigned to them. Let (Ω,F ,P)
be a probability space and (S,S) a measurable space. We denote by N<∞ the set of
all N0-valued measures on S, i.e., for all measures ξ ∈ N<∞ and all bounded subsets
A ∈ S, we have ξ(A) ∈ N0. Let N be the set of measures that can be written as a
countable sum of measures from N<∞, i.e., for all ξ ∈ N, there exist ξ1, ξ2, . . . ∈ N<∞
such that ξ =

∑∞
i=1 ξi. Furthermore, let N be the σ-algebra generated by subsets of

N of the form
{ξ ∈ N : ξ(A) = k}, A ∈ S, k ∈ N0,

i.e., ξ 7→ ξ(A) is measurable for all A ∈ S.

Definition 2.1 (Point process). A point process ξ on S is a measurable map
ξ : (Ω,F)→ (N,N ).

Let ξ be a point process on S, and let A ∈ S be an arbitrary measurable set. Then, ξ(A)
is a random variable representing the number of points of the process in the set A.
For all k ∈ N0, the event that there are exactly k points in A is given by {ξ(A) = k},
which is an element of F due to the measurability of ξ.

Remark 2.2. If S is a complete separable metric space, then any locally finite point
process on S can be represented as a countable sum of Dirac measures, i.e., there exist
points x1, x2, . . . ∈ S such that ξ =

∑∞
i=1 δxi, where δx is the Dirac measure at point

x ∈ S.

To compute expectations with respect to a point process, we need the notion of
intensity measure, which gives the mean number of points in a given measurable set.

Definition 2.3 (Intensity measure). The intensity measure λ of a point process ξ
on S gives the mean number of points in a given measurable set A ∈ S, and is defined
by λ(A) = E[ξ(A)].

Campbell’s formula provides a way to compute expectations of functionals of point
processes.

4



2. Mathematical framework

Proposition 2.4 (Campbell’s formula). Let ξ be a point process on S with intensity
measure λ, and let f : S→ [−∞,∞] be a measurable function. If

∫
S|f(x)|λ(dx) <∞,

then
E

[∑
x∈ξ

f(x)
]

=
∫
S
f(x)λ(dx),

where the sum is over all points x in the point process ξ.

The distribution of a point process is characterized by its finite-dimensional distribu-
tions, which describe the joint distribution of the number of points in a finite collection
of measurable sets.

Definition 2.5 (Finite-dimensional distributions). Let ξ be a point process on S. The
finite-dimensional distributions of ξ are the joint distributions of the random variables
ξ(A1), . . . , ξ(An) for any finite collection of disjoint measurable sets A1, . . . , An ∈ S.

A point process is called stationary if its distribution is invariant under translations.
Next, we define the Poisson point process, a fundamental example of a point process,
which will serve as the underlying model for vertex locations in each of the papers
included in this thesis. Before doing so, recall that a measure µ on (S,S) is called
s-finite if there exist finite measures µ1, µ2, . . . such that µ =

∑∞
i=1 µi.

Definition 2.6 (Poisson point process). A point process P on S is a Poisson point
process with intensity measure λ if λ is s-finite, and for all disjoint bounded sets
A1, . . . , An ∈ S, the random variables P(A1), . . . ,P(An) are independent and Poisson
distributed with parameters λ(A1), . . . , λ(An), respectively.

Remark 2.7. The symbol P for a Poisson point process will be used in two ways
throughout this thesis. Specifically, P will either denote the Poisson point process as a
random closed set of points, or the associated random counting measure, P =

∑
p∈P δp.

The intended meaning will always be clear from the context.

In the following, we introduce the Mecke formula, which is a powerful tool for computing
expectations involving Poisson point processes.

Proposition 2.8 (Multivariate Mecke formula). Let P be a Poisson process on S
with intensity measure λ, and let f : Sm ×N→ [0,∞] be a measurable function with
m ∈ N0. Then,

E
[ ∑

pm∈Pm
̸=

f(pm,P)
]

=
∫
S
E

[
f

(
pm,P ∪ {pm}

)]
λ⊗m(dpm),

where Pm̸= is the set of all m-tuples of distinct points from P, and λ⊗m is the m-fold
product measure of λ.

Finally, the Palm distribution provides a way to study the process from the viewpoint
of a typical point or object. Intuitively, this means conditioning on the existence of
a point or object, which is often shifted to the origin, and then analyzing how the
rest of the process is distributed around it. This perspective is essential in Papers B
and C, where local neighborhoods around points play a central role. Note that a point
process ξ on S is locally finite if P(ξ(A) <∞) = 1 for all bounded sets A ∈ S.

5



Introduction

Definition 2.9 (Palm distribution). Let P be a locally finite stationary point process
on Rd with finite positive intensity measure λ ∈ (0,∞). With f : Rd ×Nloc → [0,∞)
being a measurable function, the Palm distribution P0

P of P is the unique probability
measure on Nloc defined by

E
[∑
p∈P

f(p,P − p)
]

= λ

∫∫
f(p,P)P0

P(dµ) dp,

where P − p =
∑
p′∈P δp′−p.

From point processes to higher-order networks

By equipping point processes with random connections, one arrives at random connec-
tion models, which serve as a bridge to higher-order networks.

In random connection network models vertices are represented by points in a
metric space, and edges are formed randomly and independently based on a connection
function that determines the probability of an edge existing between any two points.

Definition 2.10 (Random connection model). A random connection model is a
random graph constructed from a point process P on Rd by connecting points p1, p2 ∈ P
with an edge independently with probability given by the connection function φ(p1, p2),
where φ : Rd × Rd → [0, 1] is a measurable function.

Random connection models form a fundamental class of spatial random graphs that
capture pairwise interactions between nodes.

Higher-order networks are generalizations of traditional networks that allow for
the representation of multibody relationships, such as those found in social, biological,
and technological systems. Hypergraphs and simplicial complexes are two common
mathematical structures used to model higher-order networks.

Definition 2.11 (Hypergraph). A hypergraph is a pair (V, E), where V is a set of
vertices and E is a collection of nonempty subsets of V , called hyperedges. Each
hyperedge may contain more than two vertices.

Random hypergraph models can be constructed by extending random connection
models to allow for the formation of hyperedges connecting multiple vertices. For
example, as we will see in Paper C, hypergraphs can be modeled as bipartite graphs,
where one set of vertices represents the original vertices and the other set represents
the hyperedges.

Hypergraphs provide a natural way of representing higher-order interactions, but
they do not encode any topological structure beyond the hyperedges themselves. Sim-
plicial complexes constitute a subset of hypergraphs that are combinatorial structures
with a topological interpretation, which allows for the application of tools from topology
to analyze their properties.

Definition 2.12 (Simplicial complexes). A simplicial complex on a vertex set V
is a family K of finite subsets of V such that whenever σ ∈ K and τ ⊆ σ, τ ∈ K.
The elements of K are called simplices, with 0-simplices corresponding to vertices,
1-simplices to edges, 2-simplices to triangles, and so on.

6



2. Mathematical framework

A visualization of a simplicial complex is presented in Figure 2. One way to construct
a simplicial complex from a graph is through the clique complex, which includes all
cliques, fully connected subgraphs of the graph as simplices. Topological data analysis
(TDA) provides tools to quantify the shape and connectivity of simplicial complexes.
Central among these are Betti numbers, which count topological features of different
dimensions: β0 is the number of connected components, β1 denotes the number of
loops, β2 the number of voids and so forth.

Definition 2.13 (Betti numbers). Let K be a simplicial complex. The k-th Betti
number βk(K) is the rank of the k-th homology group Hk(K), and measures the number
of k-dimensional holes in the complex.

For more details on simplicial complexes, homology, and Betti numbers, we refer the
reader to [73]. Betti numbers are topological invariants that are robust to perturbations,
and thus, they provide a summary of the global structure and connectivity of higher-
order networks. In Papers B and C, we study the distribution and scaling behavior of
Betti numbers for random simplicial complexes constructed from point processes.

Miscellaneous topics

This section recalls some analytical and probabilistic tools that will be employed
throughout the thesis.

Stable distributions and regular variation. Heavy-tailed phenomena play a
central role in random graphs and networks, where degrees and weights often exhibit
power-law behavior. Two analytical tools to capture such asymptotics are regularly
varying functions and stable distributions.

Regular variation provides a mathematical framework for describing heavy tails
and scaling properties. It is related to stable distributions through generalized central
limit theorems.

Figure 2: A simplicial complex consisting of vertices (0-simplices), edges (1-
simplices), filled triangles (2-simplices), and a filled tetrahedron (3-simplex).
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Definition 2.14 (Regular variation). A measurable function L : (0,∞)→ (0,∞) is
slowly varying at ∞ if for all c > 0,

lim
x↑∞

L(cx)
L(x) = 1.

A function f is regularly varying with index ρ ∈ R if

f(x) = xρL(x), x > 0,

for some slowly varying function L.

Loosely speaking, a function is regularly varying if it behaves like a power law up to a
slowly varying correction.

Next, we define stable distributions, which, as we will see, arise as limits of
normalized sums of i.i.d. random variables, possibly with heavy tails.

Definition 2.15 (Stable distribution). A random variable X is called α-stable,
with α ∈ (0, 2], if for all n ∈ N there exist sequences an > 0 and bn ∈ R such
that

n∑
i=1

Xi
d= anX + bn,

where X,X1, . . . , Xn are i.i.d. random variables.

Stable distributions are characterized by four parameters: the stability parameter α ∈
(0, 2], the skewness parameter β ∈ [−1, 1], the scale σ > 0, and the location µ ∈ R.
The cumulative distribution functions and probability density functions of stable
distributions do not have closed-form expressions in general, except for a few special
cases. However, they can be characterized via their characteristic functions. The
characteristic function of a stable random variable X ∼ Sα(β, σ, µ) is given by

E
[
eitX

]
= exp

(
itµ− σα|t|α

(
1− iβ sign(t) Φ(α, t)

))
, t ∈ R,

where

Φ(α, t) =
{

tan(πα/2), α ̸= 1,
− 2
π log(|t|), α = 1.

The stability index α governs the heaviness of the tails since P(|X| > x) is regularly
varying with index −α. We also note that Gaussian, Cauchy, and Lévy distributions
are special cases of stable distributions:

• α = 2 and β = 0 describes the normal distribution with mean µ and variance 2σ2,

• if α = 1 and β = 0, then X follows the Cauchy distribution with location µ and
scale σ, and finally

• if α = 1/2, β = 1, then X follows the Lévy distribution with density

f(x) =
√
σ/2π (x− µ)−3/2 exp(−σ/(2(x− µ))), where x > µ.

8
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The following generalized central limit theorem states that stable distributions
describe the limits of normalized sums of i.i.d. random variables with regularly varying
tails.

Theorem 2.16 (Generalized central limit theorem). Let X1, X2, . . . be i.i.d. random
variables. If there exist sequences of constants an > 0 and bn ∈ R such that the below
convergence in distribution holds:

an

n∑
i=1

Xi − bn
d−−−→

n↑∞
X,

where X is a nondegenerate random variable, then X is stable distributed.

Skorokhod topology and metric. In Paper D, we study convergence of càdlàg
stochastic processes (continuous from the right with left limits) with jumps. In this
setting, uniform convergence is often too restrictive. Thus, convergence is considered
in the Skorokhod space D([0, 1],R). The Skorokhod topology allows deformations of the
time axis, aligning jumps in approximating processes with those of the limit process.

Definition 2.17 (Skorokhod metric). Let f, g ∈ D([0, 1],R) be two càdlàg functions.
The Skorokhod metric dSk(f, g) is defined as

dSk(f, g) := inf
λ

(
∥λ− I∥ ∨ ∥f ◦ λ−1 − g∥

)
,

where the infimum is over all homeomorphisms λ from [0, 1] to itself, I is the identity
map and ∥ · ∥ is the supremum norm on [0, 1].

Intuitively, the metric allows for small time changes λ to align the jumps of f and g.

3 Research questions and methods

Paper A

In Paper A, which is a result of a collaboration with Christian Hirsch, Benedikt Jahnel,
and Sanjoy K. Jhawar, we study the spatial distribution of degree-k nodes in weighted
random connection models (WRCMs) with a focus on the influence of the left tail of
the weight distribution.

Motivation

Real-world networks, e.g., such as those in the fields of social or biological sciences,
often exhibit heavy-tailed degree distributions [3], meaning that although most nodes
have a relatively low degree, a few very high-degree nodes exist. In classical random
connection models (RCMs), in which edges are formed between a pair of nodes
depending on their distance only, such heavy-tailed degree distributions cannot be
produced [72, Equation (6.1)]. Thus, their generalized versions, the so-called weighted
random connection models (WRCMs), are introduced. In WRCMs, edges are formed

9
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between a pair of nodes depending not only on their distance, but also on weights
assigned to them. An important early example is the scale-free RCM introduced in the
work of Deijfen et al. [28], which generates heavy-tailed degree distributions through
suitable choices of vertex weights.

In this paper, we show a Poisson approximation result for the occurrence of degree-k
nodes in spatial scale-free random networks in the dense regime. We further examine
how the left tail of the weight distribution influences the spatial distribution of these
nodes.

Model

The precise model studied in this paper is called kernel-based spatial random network
model. We build the model from a set of points generated by a homogeneous Poisson
point process Ps on Rd with intensity s > 0, where Rd denotes the d-dimensional
Euclidean space. Next, we assign i.i.d. weights Wx ∈ R+ to each of the points x ∈ Ps
whose cumulative distribution function is denoted by F (w) := P(Wx ⩽ w). The
probability ps(x,Wx; y,Wy) that a pair of vertices x, y is connected is determined by

ps(x,Wx; y,Wy) = φ

( |B|x−y|(o)|
vsκ(Wx,Wy)

)
,

where

φ : [0,∞)→ [0, 1] is the profile function;
Br(o) ⊆ Rd is the Euclidean ball with center o and radius r;
|Br(o)| denotes the volume of the Euclidean ball;
κ : R2

+ → R+ denotes the interpolation kernel;
vs ∈ R+ is the scaling factor.

The profile function φ translates the ratio of spatial distance (encoded by the volume
of the Euclidean ball with radius |x− y|) and vertex weights (captured by κ(Wx,Wy))
into a probability of connection. If φ is a decreasing function, it reflects that if a pair
of vertices are closer to each other or have larger weights, they are more likely to
connect. We assume that the profile function φ is regularly varying with tail index α
at ∞, i.e., limr↑∞ φ(tr)/φ(r) = tα for all t > 0. The interpolation kernel function κ,
also introduced in the context of the WRCM in the work of van der Hofstad et al.
[104], maps a pair of weights w1, w2 to a factor as follows:

κ(w1, w2) = (w1 ∧ w2)(w1 ∨ w2)a with a ⩾ 0.

Note that if a = 0, then κ(w1, w2) = w1 ∧ w2, which is called the min kernel. On the
other hand, if a = 1, then κ(w1, w2) = w1w2, which is known as the product kernel.
The connection probabilities for an example of a profile function φ and an interpolation
kernel κ are shown in Figure 3. We can see that the connection probabilities are
influenced not only by the distance of the nodes but also by their weights.

10
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0 1 2 3

wx = 1

2

3

0.2
0.4

0.60.8

|x− y|

wy

Figure 3: Connection probabilities of a node at location x and weight wx = 1
and a node at location y and weight wy in a weighted random connection model
with parameters d = 2, vs = π, φ(x) = (1 + x)−2, and a = 3.

Then, the resulting graph G(Ps, vs) is therefore random in three ways:

• through the spatial location of the nodes,

• through the weights assigned to the nodes and

• through the random edges connecting the nodes.

Despite these sources of randomness, van der Hofstad et al. [104] showed that many
key network properties, such as the scaling of the vertex degrees and the clustering
coefficient, are independent of the specific form of the connection function.

We examine the spatial distribution of k-degree nodes in the graph G(Ps, vs) in
the limit as the intensity s of the Poisson point process Ps increases. To ensure that
the intensity of the k-degree nodes remains bounded, the scaling factor vs is chosen as
a function of the intensity s such that the expected number of degree-k nodes in a
bounded region remains constant as s → ∞. In Lemma A.2.1, it turns out that vs
must fulfill the scaling Equation (SCG), which is restated below for convenience:

k! = sE[Avs(W )k exp(−Avs(W ))] where Avs(w) = svs E[κ(W, · )].

Main results

Having established the model, we now focus on the spatial distribution of degree-k
nodes in the high-density limit as s→∞, which is given by the point measure

ξs :=
∑

x∈Ps∩H
1{deg(x) = k in G(Ps, vs)}δx,

where δx denotes the Dirac delta, H ⊆ Rd is a finite-volume Borel set, and deg(x)
denotes the number of edges of a node x.

11
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If k = 0, then the point measure ξs counts the isolated nodes in G(Ps, vs). The
typical weight ws of an isolated node cannot be too small, since these nodes are unlikely
to appear. On the other hand, the typical weight ws cannot be too large, since these
nodes are unlikely to be isolated due to their high weight. It turns out that the typical
weight ws of an isolated node is given by the 1/(2s)-quantile of the weight distribution,
i.e., the weight ws satisfies F (ws) = 1/(2s).

Before stating the main result, we introduce the notion of the Kantorovich–
Rubinstein distance.

Definition 3.1 (Kantorovich–Rubinstein distance). The Kantorovich–Rubinstein
distance dKR between two point measures ξ and ξ′ is defined as

dKR(ξ, ξ′) := sup{|E[g(ξ)]− E[g(ξ′)]| : g ∈ LIP},

where LIP denotes the set of Lipschitz functions on the space of point measures.

Then, our main result can be stated as follows:

Theorem A.2.2 (Poisson approximation). Let δ := (α − 1)/2, and let us assume
that for some K > 0 and η ∈ (0, 1), the weight distribution F satisfies the following
conditions:

(svs)−1w−η
s ∈ o(1/ log(s))

F (wηs ) w−(K+1)(1−η)
s ∈ o(1/ log(s))

w−(1−Kδ)(1−η)
s ∈ o(1/ log(s)).

Furthermore, let H ⊆ Rd denote a finite-volume Borel set, and let ζ be a Poisson
point process with intensity 1{x ∈ H} dx. Then, the point measure ξs converges in the
Kantorovich–Rubinstein distance dKR to ζ as the intensity s of the point process Ps
increases:

lim
s↑∞

dKR(ξs, ζ) = 0.

Note that svs is the order of the expected degree of a typical node o. With Wo

denoting the weight of o, this can be seen from the following calculation, which is
based on the proof of Lemma A.4.3:

E
[
deg(o)

∣∣Wo
]

= E
[ ∑

x∈P̃s : x↔o

1
∣∣∣Wo

]
= s

∫
Rd

E
[
ps(o,Wo;x,Wx)

∣∣Wo
]
dx,

where we used Campbell’s formula [66, Proposition 2.7] in the second step. Next, we
substitute the profile function and switch to spherical coordinates with v := |B|x|(o)|:

E
[
deg(o)

∣∣Wo
]

= s

∫ ∞

0
E

[
φ(v/(vsκ(Wo,Wx)))

∣∣Wo
]
dv

= svs

∫ ∞

0
E

[
κ(Wo,W )φ(u)

∣∣Wo
]
du
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where we substituted u := v/(vsκ(Wo,Wx)), applied Fubini’s theorem in the last step,
and recognized that the integral is a function of the weights only. Interchanging the
expectation and the integral and noting that

∫ ∞
0 φ(u) du = 1 by assumption gives us

E
[
deg(o)

∣∣Wo
]

= svs E
[
κ(Wo,W )

∫ ∞

0
φ(u) du

∣∣∣Wo

]
= svsh(Wo).

We can see that the left tail, or more precisely, the 1/(2s) quantile ws of the weight
distribution plays a crucial role in the three technical assumptions of the theorem.
To interpret these assumptions, we can think of η to be close to 1 and K to be
small. Then, the first condition roughly tells us that the product of the expected
typical degree svs and the weight ws should increase at a rate faster than log(s) as
the intensity s increases. The second at approximately requires that swε1

s increases
with a rate faster than log(s) for some small ε1 > 0. Lastly, the third condition states
that wε2

s for some small ε2 > 0 should increase at a rate faster than log(s). Although
the assumptions of the theorem are technical, they can be satisfied by many common
weight distributions, such as the polynomial and stretched exponential left tails, as
shown in Section A.3.

Finally, we point out that convergence in distribution follows from convergence in
Kantorovich–Rubinstein distance, which is the conclusion of Theorem A.2.2.

Methodology

To show Theorem A.2.2, we would like to apply [16, Theorem 4.1], which applies
Stein’s method to show a convergence result. To state this result in the context of our
model, we need to introduce some additional notation.

Let (X,X ) denote a locally compact second countable Hausdorff space. Let Nloc
and F denote the set of locally finite point sets on X, and the set of closed subsets
of X, respectively.

Furthermore, let S : X ×Nloc → F denote a measurable function that assigns a
closed set to each pair x ∈ X and ω ∈ Nloc. Moreover, we assume that S is a stopping
set, which, loosely speaking, means that S can only depend on points inside the set it
assigns [69, Appendix A]. More precisely, S is a stopping set if for all x ∈ X and all
closed sets A ∈ F , the following holds:

{ω ∈ Nloc : S(x, ω) ⊆ A} = {ω ∈ Nloc : S(x, ω ∩A) ⊆ A}.

Finally, we introduce an indicator function g : X×Nloc → {0, 1}, which is localized
to the stopping set S, i.e., for all x ∈ X, we have that g(x, ω) = g(x, ω ∩ A) for all
A ⊃ S(x, ω). This means the function values of g are determined solely by the points
of ω that are in S.

Theorem 3.2 (Bobrowski, Schulte, Yogeshwaran [16]). Let ψ and ζ be two Poisson
point processes on X with intensities λψ, λζ <∞, respectively. Furthermore, let ξs be
a Poisson-driven point process defined from the Poisson process ψ as follows:

ξs[ψ] :=
∑
x∈ψ

g(x, ψ) δx λξ =
∫

E[g(x, ψ + δx)] dλψ <∞.

13
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For any indicator function g localized to a stopping set S. Then,

dKR(ξs, ζ) ⩽ dTV(λξ, λζ) + E1 + E2 + E3 + E4,

where dTV(λξ, λζ) is the total variation distance of the intensity measures, and
E1, . . . , E4 are error terms for higher-order deviations as specified in [16, Theorem 4.1].

The form of the intensity measure λξ results from the application of Mecke’s formula
to the definition of the point process ξ. The error terms E1, . . . , E4 quantify deviations
when the indicator function g is 1 for two-point configurations that are close to each
other, excluding interactions not present in Poisson processes.

To apply this theorem to our model, we would like to use g((x,Wx), P̃s) =
1{deg(x) = k in G(Ps, vs)}, where deg(x) denotes the degree of the point x with
mark Wx in the graph G(Ps, vs). However, the theorem cannot be directly applied
since it requires the indicator function g to be localized to a stopping set S. In our
setting, this is not the case: nodes far away from x can influence the degree of x if
they have a sufficiently large weight, and in general, nodes can have large weights as
well. This problem is visualized in Figure 4.
Thus, our strategy is to follow the two steps below.

(1) First, in Proposition A.4.1, we approximate the indicator function g in two ways.

• Mark approximation: we neglect points with marks larger than wηs .
• Reach approximation: we neglect points that are too far away from x.

In both the mark and the reach approximation, we bound the Kantorovich–
Rubinstein distance between the original and the truncated functionals. We need

S((x,Wx),Ps)

x

Wx

position

weight

Figure 4: The problem of localization: the degree of the central red point x
with mark Wx is influenced by points far away from (x,Wx). Thus, no matter
how large the stopping set S((x,Wx),Ps) is, we cannot be sure that it contains
all points that influence the degree of x.
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to control two types of errors: the truncations lead to lost k-degree points that
have edges to truncated points, and some points with degrees larger than k will be
k-degree nodes. These truncations allow us to apply the Poisson approximation
theorem.

(2) Then, in Proposition A.4.2, we show that the error terms in the theorem converge
to 0 as the intensity s increases. The theorem then gives us convergence in the
Kantorovich–Rubinstein distance dKR.

Paper B

Paper B, written in collaboration with Christian Hirsch, studies the age-dependent
random connection model (ADRCM) viewed as a higher-order network.

Motivation

As mentioned earlier, real-world networks often exhibit heavy-tailed degree distribu-
tions. The first widely used model to describe such a system was the Barabási–Albert
model introduced by Barabási and Albert [3]. In this model, the network forms
gradually by adding new nodes one by one. Each new node connects to existing nodes
with a probability proportional to their degree, which means that high-degree nodes
are more likely to be connected to new nodes. This mechanism is often referred to as
preferential attachment. However, the Barabási–Albert model is a nonspatial model
that is hard to analyze due to the dependence of the degree of the nodes.

To overcome this difficulty, the age-dependent random connection model (ADRCM)
was introduced in [40]. In this model, each node is assigned an arrival time, and its age
determines the probability of new, younger nodes connecting to existing older nodes
in such a way that the resulting degree distribution is heavy-tailed.

In this paper, we study the ADRCM as a higher-order network model by con-
structing a simplicial complex on the simple graphs that the ADRCM model generates.
To examine how well the clique complex [33] of the ADRCM captures the properties
of real-world networks, we compare the higher-order networks with the collabora-
tion network of the arXiv dataset, conducting hypothesis tests for various network
characteristics.

Model

The age-dependent random connection model (ADRCM) is defined as follows. Vertices
(x, t) ∈ [−1/2, 1/2]d×R+ arrive to the d-dimensional Euclidean unit cube [−1/2, 1/2]d
at spatial location x ∈ [−1/2, 1/2]d and arrival time t according to a homogeneous
Poisson point process P . Two vertices (x, u) and (y, v) with u ⩽ v are connected with
a probability p(x, u; y, v) defined by the profile function φ : [0,∞)→ [0, 1] as follows:

p(x, u; y, v) = φ

( |x− y|
βu−γv−(1−γ)

)
,

15



Introduction

where

φ : [0,∞)→ [0, 1] profile function;
β > 0 scaling factor;
γ ∈ (0, 1) age parameter.

Remark 3.3. We remark that in the work of Gracar et al. [40], the ADRCM is
defined slightly differently on the d-dimensional torus Td1 = [−1/2, 1/2)d with the torus
distance dtorus(x, y) = [

∑d
i=1(minm∈{−1,0,1}d |xi − yi + m|)2]1/2 with x = (x1, . . . , xd)

and y = (y1, . . . , yd) instead of the Euclidean distance |x− y|. As we will see later, we
will consider the limit as the size of the torus grows to infinity, and then the torus
distance converges to the Euclidean distance. In the cases of simulation studies of
finite-size networks and hypothesis tests on real-world datasets, we will use the torus
distance to eliminate boundary effects and to ensure consistency with [40].

While the parameter β governs the overall edge density, the parameter γ controls
the strength of the preferential attachment mechanism and determines the tail index
of the degree distribution.

Note that
φ

(
d(t1/dx, t1/dy)d

β(u/t)−γ(v/t)−(1−γ)

)
= φ

(
d(x, y)d

βu−γv−(1−γ)

)
,

thus, for a finite value of t, the ADRCM can be rescaled using the transformation
ht : [−1/2, 1/2]d× (0, t]→ [−t/2, t/2]d× (0, 1] defined by the map (x, u) 7→ (t1/dx, u/t),
which is visualized in Figure 5. This transformation allows us to examine the ADRCM
on the more convenient space [−t/2, t/2]d × (0, 1] instead of [−1/2, 1/2]d × R+. From
now on, we will study the rescaled ADRCM, and we will not introduce new notations
for the rescaled model.

−1/2 0 1/2
0

t

−t/2 0 t/2
0

1

Figure 5: Rescaling of the age-dependent random connection model. The figure
was recreated based on [40, Figure 1].
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The connection condition can be interpreted similarly to the profile function used
in the weighted random connection model (WRCM) from Paper A. First, define the
kernel function κADRCM(u, v) as

κADRCM(u, v) := (u ∧ v)−γ(u ∨ v)−(1−γ)

=
(
u−(1−γ) ∨ v−(1−γ))−γ/(1−γ)(

u−(1−γ) ∧ v−(1−γ))
=

(
ũ ∨ ṽ

)−γ/(1−γ)(
ũ ∧ ṽ

)
,

where we introduced the transformed marks ũ := u−(1−γ) and ṽ := v−(1−γ) in the last
step. The transformed marks ũ, ṽ are distributed according to a Pareto distribution
with tail index 1/(1− γ). We note that Gracar et al. [42] introduced a more general
class of kernels that includes the kernel κADRCM as a special case. Then, the connection
probability and the profile function can be interpreted in the framework of the WRCM.
Note that the results of Paper A cannot be directly applied to the ADRCM, since
the regular variation at ∞ of the profile function φ is not required, and the weight
distribution does not fulfill the assumptions of Paper A.

In our paper, we focus on the one-dimensional case d = 1 with profile func-
tion φ(r) = 1{r ⩽ 1}. This means that the connection between a pair of points
(x, u), (y, v) ∈ R × (0, 1] with u ⩽ v is deterministic, and formed if the condition
|x− y| ⩽ βu−γv−(1−γ) holds. This connection condition is visualized in Figure 6 as
well. The expected number of edges of a node (x, u) to nodes with smaller arrival
times is Poisson distributed with parameter 2β/(1 − γ), which corresponds to the
outgoing degree of the node. On the other hand, the expected number of edges to
nodes with larger arrival times is Poisson distributed with parameter 2β

γ (u−γ − 1),
which corresponds to the incoming degree of the node. Since the mark u is uniformly
distributed on (0, 1], the expected number of incoming edges of a node has a power-law
tail with tail index 1 + 1/γ, which can be seen by the application of Poisson concentra-
tion inequalities. These properties make the ADRCM an interesting model to study,
as it captures the preferential attachment mechanism while being more tractable than
the Barabási–Albert model.

|x− y| ⩽ β
2 v

−γu−(1−γ)

|x− y| ⩽ β
2u

−γv−(1−γ)

older neighbors

younger neighbors

x

(x,u)

1

position

mark

Figure 6: Connection conditions in the ADRCM. In the figure, we have a fixed
point (x, u). The gray area shows the domain of points that can be connected
to (x, u). Note that the connection condition differs for older and younger neighbors
with marks less and larger than u, respectively. The figure was recreated based
on Figure B.3 from Paper B.
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The ADRCM produces a simple graph; therefore, it is not well-suited to study
higher-order structures. In this paper, we study the ADRCM as a higher-order network
by considering its clique complex G := G(P), which is a simplicial complex in which
each clique of the original graph corresponds to a simplex.

Main results

Let us begin by introducing the Palm distribution of the typical m-simplex ∆m =
{P0, . . . , Pm} ∈ G in the ADRCM for m ⩾ 0. Let Nloc denote the space of locally
finite point sets on R × (0, 1], let Cm denote the set of distinct (m + 1)-tuples of
points in R× (0, 1], and let f : Cm ×Nloc → [0,∞) be a measurable function that is
symmetric in the first m + 1 arguments. Furthermore, we denote the lowest-mark
vertex of a simplex ∆m by c(∆m). Then, the expectation of the function f of the
typical m-simplex ∆∗

m is given by

E[f(∆∗
m,P)] = 1

λm
E

[ ∑
∆∈Tm(P)

1{c(∆) ∈ [0, 1]}f
(
∆− c(∆),P − c(∆)

)]
,

where λm > 0 is the simplex density and Tm(P) is the set of m-simplices in G. Note that
the sum is taken over all m-simplices whose lowest-mark vertex is in the interval [0, 1].
In our paper, we show that the above expectation exists and the m-simplex intensity
is finite.

In our first result, we examine the higher-order degree distribution of the ADRCM,
which describes the adjacency structure of simplices in higher dimensions. Let us
consider an m-simplex ∆m ⊆ G. The higher-order m′-degree of the simplex ∆m is
defined as the number of m′-simplices that contain ∆m:

degm′(∆m) := |{σ ∈ G : σ ⊃ ∆m, |σ| = m′ + 1}|.

The standard vertex degree corresponds to the case m = 0 and m′ = 1, i.e., deg1(p)
denotes the number of edges incident to the vertex p ∈ G. The case m = 1, m′ = 2
corresponds to the edge-degree, i.e., the number of triangles incident to an edge in the
graph. The edge degree and the triangles formed in the network are of high interest,
since they are related to the clustering coefficient studied in—among others—van der
Hofstad et al. [103, 104]. Then, the simplex-degree distribution is defined as

dm,m′(k) = P
(
degm′(∆m) ⩾ k

)
,

which generalizes the result of Gracar et al. [40, Proposition 4.1], which considers
ordinary degree distributions for m = 0 and m′ = 1. Our first result indicates that the
higher-order degree distribution of the ADRCM follows a power law.

Theorem B.2.1 (Power law for the typical simplex degree). Let γ ∈ (0, 1) and
m′ > m ⩾ 0. Then,

lim
k↑∞

log(dm,m′(k))/ log(k) = m− (m+ 1)/γ.
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Note that the left-hand side of the above equation is the power-law exponent of the
higher-order degree distribution. Furthermore, note that the right-hand side does not
depend on the dimension m′, which might be surprising at first.

Next, we study the asymptotic behavior of the Betti numbers of the clique com-
plex G(P ∩ [0, n]). In our second main result, we show that the distribution of the
appropriately scaled qth Betti number βn,q of G(P ∩ [0, n]) is asymptotically normal.

Theorem B.2.2 (CLT for the Betti numbers). Let q ⩾ 0 and 0 < γ < 1/4. Then,
n−1/2(βn,q − E[βn,q]) converges in distribution to a normal distribution.

Our proof requires the constraint γ < 1/4 since it guarantees a finite fourth moment
of the degree distribution. On the other hand, in the paper we also conjectured that
Theorem B.2.2 holds for γ < 1/2, i.e., if the variance of the degree distribution is finite.
We note that in the work by Pabst [82], the positivity of the limiting variance was also
established; moreover, the convergence in distribution holds even with normalization
by the standard deviation. If γ > 1/2, the model generates long edges, which makes
the variance of the degree distribution infinite. Then, the asymptotic normality of
the Betti numbers breaks, and we expect that the limiting distribution is stable. The
above conjectures are supported by our numerical simulation study, which we present
later in this section.

Next, we define the edge count Sn as the number of edges in the clique complex
G(P ∩ [0, n]):

Sn :=
∣∣{(y, v)→ (x, u) : (y, v), (x, u) ∈ P, x ∈ [0, n]}

∣∣,
where the notation y → x means that the edge (y, v)→ (x, u) is formed in the ADRCM
with u ⩽ v. For the edge count Sn, we have the following two results.

Theorem B.2.3 (CLT for the edge count). Let γ < 1/2. Then, the quantity
Var(Sn)−1/2(Sn − E[Sn]) converges in distribution to a standard normal distribution.

Theorem B.2.4 (Stable limit law for the edge count). Let γ ∈ (1/2, 1). Then,
n−γ(Sn − E[Sn]) converges in distribution to Sγ−1, where Sγ−1 is a 1/γ-stable distri-
bution.

Note that if γ ∈ (0, 1/2), the variance of the degree distribution is finite. In this regime,
the limiting edge count distribution is normal. On the other hand, if γ ∈ (1/2, 1),
the degree distribution is heavy-tailed, and, in the appropriate sense, the probability
of long edges is not negligible. In this regime, the distribution of the edge count Sn
converges to a stable distribution as the size n of the observation window grows.

Theorem B.2.1 determines the power-law exponent of the higher-order degree
distribution of the ADRCM in terms of the parameter γ, which means that the degree
distributions for various dimensions are not independent. However, as we see in
the Section B.8, we need a more flexible model to fit it to real-world datasets, in
which the tail indices of the higher-order degree distributions do not have such a
strong dependence. Thus, we define the thinned age-dependent random connection
model (TADRCM). In this modification, we remove edges so that the tail index of the
vertex-degree distribution decreases, but the power-law exponent of the edge-degree
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distribution d1,2 describing the distribution of the number of triangles adjacent to an
edge is not affected. This allows for the TADRCM model to be fitted to the edge and
vertex degrees independently.

While we show that our theoretical results hold for infinitely large networks in the
limit, in Section B.7, we conduct a numerical simulation study to verify the theorems
for finite settings. Apart from simulating finite networks, we also simulate the Palm
distribution of the typical m-simplex ∆∗

m in the ADRCM, eliminating the finite-size
effects. We use the software described in Section 4 to simulate the ADRCM.

Simulating several finite networks of various sizes, we find that for large enough
networks of size ∼ 105, the fitted power-law exponents of the higher-order degree
distributions are close to their theoretical values predicted by Theorem B.2.1.

Next, we use Q-Q plots to compare the edge count distributions for different γ
parameters with normal and stable distributions. We find that our simulations are in
alignment with Theorems B.2.3 and B.2.4. In particular, the heavy-tailed behavior is
prominent in the case when γ > 1/2.

Finally, we conduct a similar study for the first Betti numbers. Our Q-Q plots
support our conjecture that Betti numbers follow a normal distribution as well in
the domain γ ∈ (0, 1/2) and a stable distribution if γ ∈ (1/2, 1). This is supposedly
because the edge degree distribution has infinite variance if γ > 1/2.

After the simulation study, we conduct hypothesis tests on the collaboration network
of arXiv, including documents published in four different scientific fields: computer
science, electrical engineering, mathematics, and statistics. To build a simplicial
complex from these datasets, we represent authors as vertices, and we establish a
higher-order connection for a set of authors whenever there is at least one common
publication they published together.

We then conduct hypothesis tests using triangle counts and Betti numbers. The
model-generated networks exhibit significantly higher triangle counts and fewer loops
compared to the empirical datasets. We believe that this can be partially explained
by the specific form of the profile function we use, which leads to vertices connecting
to all other vertices in their neighborhood. This leads to a tree-like structure of the
ADRCM, which is also supported by our simulation study. Thus, in a future work, it
would be worthwhile to study the ADRCM with a more flexible profile function as well.
While we conjecture that most parts of the proofs could be adapted to more general
profile functions with bounded support, some proofs, e.g., the proof of Equation B.6,
would break down if the profile function has unbounded support. This is because, in
this case, the common neighborhood of two vertices conditioned on their marks cannot
be easily controlled. Furthermore, if the profile function does not converge to 0 fast
enough, the weak stabilization part of the Betti number proof may break down.

Methodology

Now, we turn our attention to the proof ideas of the main results of Paper B.
First, we need to show that the Palm distribution of the typical m-simplex ∆∗

m is
well-defined and the m-simplex intensity λm is finite. To do this, we write λm in terms
of an integral of the indicator function of the event that the vertices of the typical
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simplex ∆∗
m form an m-simplex. Then, ordering the vertices of ∆∗

m according to their
marks, we apply an iterative approach to calculate the integral.

To prove Theorem B.2.1, we show a lower bound and an upper bound for the
higher-order degree distribution dm,m′(k). The key tool to derive these bounds is the
Palm representation of the typical m-simplex ∆∗

m. For the lower bound, we restrict
the domain of the points of the typical m-simplex ∆∗

m to a rectangle Bk ⊆ R× (0, 1]
in which it is certain that the m+ 1 points of the simplex are connected. Then, we
show that the probability of ∆∗

m having at least k neighboring m′-simplices is bounded
away from 0. For the upper bound, we follow two steps.

(1) First, we reduce the problem to the case when m′ = m+ 1.

(2) Then, we show the upper bound for m′ = m + 1 using Poisson concentration
and by bounding the common neighborhood of the m+ 1 points of the typical
simplex ∆∗

m.

The first step is based on the following observation. Consider the oldest vertex (0, u)
of the typical m-simplex ∆∗

m, and suppose a younger neighbor of (0, u) is the youngest
vertex of some of the neighboring m′-simplices. The number of these neighboring
m′-simplices is bounded by the maximum out-degree of the youngest vertex raised
to the power m′ − m. Then, multiplying this number by the number of younger
neighbors of (0, u), we get an upper bound for the number of m′-simplices containing
the vertex (0, u). Given the mark u, the degree of the vertex (0, u) is Poisson distributed
with fast decaying tail probabilities.

To prove Theorem B.2.2, we adapt a general CLT result for stabilizing Poisson
functionals [89, Theorem 3.1]. We begin by introducing the add-one cost operator
δ(φ, u) := β(φ ∪ {(0, u)}) − β(φ), where β is the Betti number, and φ ∈ Nloc is a
locally finite point set. To apply [89, Theorem 3.1], we verify the following conditions,
conceptually similarly to [48, Theorem 5.2].

(1) Moment condition: it holds that supn⩾1 E[δ(Pn, U)4] <∞.

(2) Weak stabilization: it holds that δ(P ∩Wn, U) converges almost surely to a
finite limit as n→∞, where Wn = [−n/2, n/2]× (0, 1].

To verify the moment condition, we show that the add-one cost operator δ is bounded
by the number of q- and (q + 1)-simplices containing the new point. This is the step
which introduces the constraint γ < 1/4 in Theorem B.2.2. The weak stabilization
condition requires that the change in the Betti number caused by adding a new point
becomes constant as the observation window grows. We analyze the changes in the
cycle space and boundary space separately, which define the Betti number. We first
show that the number of new cycles or boundaries created by the new point is bounded.
Then, we show that the increment of the Betti number is monotonic in the observation
window size.

In the proofs of Theorems B.2.3 and B.2.4, we write the edge count as a sum of
in-degrees of vertices in a window of size n as follows:

Sn =
n∑
i=1

Ti :=
n∑
i=1

∑
Pj∈[i−1,i]×(0,1]

Din(Pj),
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where Din(P ) denotes the in-degree of the point P ∈ P. For Theorem B.2.3, we apply
a CLT for associated random variables [107, Theorem 4.4.3]. Let us first recall the
definition of associated random variables.

Definition 3.4 (Associated random variables). The sequence {Ti}i∈{1,...,n} is associated
if and only if for any f1, f2 : Rk → R coordinatewise nondecreasing functions with
E[f1,2(T1, . . . , Tk)2] <∞,

Cov(f1(T1, . . . , Tk), f2(T1, . . . , Tk)) ⩾ 0.

To apply [107, Theorem 4.4.3], we need to show that the random variables {Ti} are
associated and that the sum of the covariances

∑
k⩾1 Cov(T1, Tk) < ∞ is finite. To

show Theorem B.2.4, we apply [107, Theorem 4.5.2], which states the following.

Theorem 3.5 (α-stable convergence). Let {Xi}i be i.i.d. nonnegative random variables
such that P(Xi > x) ∼ Ax−α for some α ∈ (1, 2) and A > 0. Then, n−1/α(

∑n
i=1Xi −

nE[X1]) converges in distribution to an α-stable random variable Sα.

The main challenge in applying the above theorem is controlling the spatial
correlations of the vertex degrees. First, we decompose the edge count by writing
Sn = S⩾

n + S⩽
n , where S⩾

n and S⩽
n denote the sum of the in-degrees of low-mark and

high-mark vertices, respectively. After showing that S⩾
n converges to 0 in probability,

we approximate S⩽
n as a sum of i.i.d. random variables with a distribution having

power-law tails. Then, [107, Theorem 4.5.2] concludes the proof of Theorem B.2.4.

Paper C

With my coauthors, Christian Hirsch, Moritz Otto, and Morten Brun, in Paper C, we
examine a weighted random connection model that describes hypergraphs.

Motivation

While the higher-order networks generated by the age-dependent random connection
model (see Paper B) possess many of the characteristics of real-world networks, it does
not capture the strength of the interactions of a group of vertices. For instance, in
a scientific collaboration network, the age-dependent random connection model only
indicates whether a set of authors collaborated. Still, it does not provide information
about the number of papers they published.

To address this limitation, we introduce a random connection hypergraph model
(RCHM). Our model represents a hypergraph as a bipartite graph, where one vertex set
corresponds to nodes of the hypergraph. In contrast, the second vertex set corresponds
to the interactions, or hyperedges, connecting the points in the first vertex set. Then,
if a network node is connected to an interaction, it indicates that the node is part of
that hyperedge.
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Model

Similarly to Paper B, we consider the space S := R× (0, 1], in which R represents the
spatial location and (0, 1] the marks. Then, two points (x, u), (z, w) ∈ S are connected
if

|x− z| ⩽ βu−γw−γ′
, (1)

where γ, γ′ ∈ (0, 1) and β > 0 are parameters of the model. Note that the connection
condition is similar to the one in Paper B, but now the condition does not distinguish
which of the marks u and w is smaller. The neighborhood of a point (x, u) ∈ S is
defined as

B((x, u), β) :=
{
(z, w) ∈ S : |x− z| ⩽ βu−γw−γ′}

,

and for ∆ ⊆ S, the joint neighborhood of the points in ∆ is defined as the intersection
of the individual neighborhoods B(∆, β) :=

⋂
p∈∆B(p, β) as the joint neighborhood of

the points in ∆.
To define the hypergraph, let P, P ′ be two independent Poisson point processes

on S with intensity measures λ| · |, λ′| · |, respectively, where λ, λ′ > 0, and | · | denotes
Lebesgue measure on S. In this model, the points in P represent the vertices of the
hypergraph, whereas the points in P ′ represent the hyperedges. Then, we denote by
Gbip := Gbip(P,P ′) the bipartite graph with vertex set P ∪ P ′. A connection between
two points p ∈ P and p′ ∈ P ′ is formed if and only if p and p′ fulfill the connection
condition (1).

The random connection hypergraph model (RCHM) Ghyp := Ghyp(P,P ′) is defined
from the bipartite graph Gbip using the notion of Dowker complex [18]. The set of
hyperedges Σm consisting of m+ 1 P-points is defined as the family of those sets of
point ∆m ⊆ P such that their common neighborhood in P ′ is nonempty:

Σm :=
{
∆m ⊆ P : #(∆m) = m+ 1,P ′(B(∆m, β)) ̸= 0

}
,

where #( · ) denotes the cardinality.
A figure illustrating the RCHM is provided in Figure 7.
Note that the hypergraphs generated by the RCHM are simplicial complexes, since

by definition, if ∆m ∈ Σm then P ′(B(∆m′ , β)) ̸= 0, and thus for ∆m′ ⊆ ∆m with
m′ ⩽ m, then P ′(B(∆m′ , β)) ̸= 0 as well.

The center c(∆m) of an m-simplex ∆m ∈ Σm is defined as the point in ∆m with
the lowest mark. Note that almost surely, there is a unique point in ∆m with the
lowest mark, since the marks are sampled from a continuous distribution.

Main results

Throughout the presentation of the results, we write pm := (p1, . . . , pm) ∈ Sm for
an m-tuple of points. Furthermore, we introduce pm(u) := ((0, u), p1, . . . , pm) ∈
(0, (0, 1]) × Sm for u ∈ (0, 1] and −→p m(u) := {(0, u), p1, . . . , pm} for the tuple and
corresponding set, respectively.

As in Paper B, we begin by showing that the intensity λm of m-simplices in the
RCHM is finite if γ′ < 1/(m+ 1), which is required to define the Palm distribution of
the typical m-simplex ∆∗

m. Then, the distribution of the typical m-simplex is defined
in the following proposition.
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hyperedges as
sets of vertices
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(P-points)
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Figure 7: Illustration of the random connection hypergraph model (RCHM).
Vertices (black dots) are scattered in space with random marks (vertical axis).
Hyperedges (gray shaded areas) are formed between sets of vertices whenever
the vertices have a common hyperedge (red dots) they are connected to. The
connections can be represented as a bipartite graph (red dashed lines) between
vertices and hyperedges.

Proposition C.2.2 (Distribution of the typical m-simplex). Let m ⩾ 0, γ < 1,
γ′ < 1/(m + 1), and let f : (R × (0, 1])m+1 × Nloc × Nloc → R+ be an arbitrary
nonnegative measurable functional depending on an m-simplex as well as on the point
processes P and P ′. Then,

E
[
f(∆∗

m,P,P ′)
]

= λm+1

λm(m+ 1)!

∫
(0,1]×Sm

E
[
f(−→p m(u),P ∪ −→p m(u),P ′)1{−→p m(u) ∈ Σm}

]
d(u,pm).

Here, if −→p m(u) does not consist of precisely m+ 1 elements, then we let f(−→p m(u),P ∪
−→p m(u),P ′) := 0.

After establishing the distribution of the typical m-simplex, we examine the higher-
order degree distribution of the RCHM, which we define as follows. The higher-order
degree of an m-simplex ∆m is the number P ′-points to which all points in ∆m are
connected, i.e., deg(∆) := P ′(B(∆, β)). Our first result is that the higher-order degrees
of the RCHM are scale-free, i.e., they have a power-law tail.

Theorem C.2.3 (Scale-freeness of higher-order degrees). Let m ⩾ 0, γ < 1, γ′ <
1/(m+ 1). Then,

lim
k↑∞

log
(
P

(
deg(∆∗

m) ⩾ k
))

log(k) = m− m+ 1
γ

.
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Our next result corresponds to Theorem B.2.2 in Paper B, and it shows that if
γ < 1/4, the Betti numbers of the RCHM are asymptotically normal as the size n of
the observation window Sn := [0, n]× (0, 1] increases.

Theorem C.2.4 (Asymptotic normality of Betti numbers). Let β(n)
m denote the mth

Betti number of Ghyp(P ∩ Sn,P ′ ∩ Sn) with m ⩾ 0. If γ < 1/4 and γ′ < 1/(4(m+ 1)),
then, in distribution,

n−1/2(
β(n)
m − E

[
β(n)
m

]) d−−−→
n↑∞

N (0, σ2) for some σ ⩾ 0,

where N (0, σ2) denotes the normal distribution with mean 0 and variance σ2.

Note that if m = 0, the constraint γ < 1/4 is almost equivalent to the condition
that the degree distribution has a finite fourth moment. As it will be seen from our
simulation study, consistently with the results presented in Paper B, the asymptotic
normality of the Betti numbers breaks down for γ ⩾ 1/2. This is expected since in
this case, the degree distribution has an infinite variance, and heavy nodes connecting
to many other vertices fill many of the loops. As for Paper B, the positivity of the
limiting variance was also established by Pabst [82], and therefore the convergence in
distribution holds also with the normalization by Var(β(n)

m )1/2.
Next, we state limit laws for the edge count of the RCHM, defined as

Sn :=
∑

Pi∈P∩Sn

deg(Pi),

where deg(Pi) denotes the degree of a point Pi in the bipartite graph Gbip.

Theorem C.2.5 (Normal and stable limits of edge counts). Let γ′ < 1/3. Then, the
following distributional limits hold as n→∞.

(a) Let γ ∈ (0, 1/2). Then, n−1/2(Sn − E[Sn])
d
−−−→
n↑∞

N (0, σ2) for some σ > 0.

(b) Let γ ∈ (1/2, 1). Then, n−γ(Sn − E[Sn])
d
−−−→
n↑∞

Sγ−1, where Sγ−1 is a γ−1-stable
random variable.

Finally, we define the m-simplex count Sn,m := #
{
∆m ∈ Σm : c(∆m) ∈ [0, n]

}
as

the number of m-simplices centered in the observation window Sn. Then, we show
that the m-simplex count Sn,m has a normal limit law for γ < 1/2 and a stable limit
law for γ ∈ (1/2, 1).

Theorem C.2.6 (Normal and stable limits of simplex counts). Let γ′ < 1/(2m+ 1).
Then, the following distributional limits hold as n→∞.

(a) Let γ ∈ (0, 1/2). Then, n−1/2(Sn,m − E[Sn,m])
d
−−−→
n↑∞

N (0, σ2) for some σ2 > 0.

(b) Let γ ∈ (1/2, 1). Then, n−γ(Sn,m − E[Sn,m])
d
−−−→
n↑∞

Sγ−1, where Sγ−1 is a γ−1-
stable random variable.
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In the model considered in Paper B, the corresponding result was not established.
The reason is that in Paper C, we could use the formula for the total variance to
condition on the point process P ′, which is necessary to prove Theorem C.2.6. This
argument could not have been used in Paper B. We note that the proof for the
heavy-tailed case has since been provided by Owada and Hirsch [80, Theorem 3.5].

To show that our conjectures and the results proved in the large network limit
n→∞ hold for finite networks, we conducted a simulation study using a Monte Carlo
approach. Using the computational framework introduced in Section 4, we generate
several higher-order networks and examine their properties.

We find that the degree distribution of the RCHM is scale-free, and the fitted
power-law exponents become closer to the theoretical value if the size of the network
exceeds ∼ 105 P- and P ′-vertices. This value is comparable to the size of many
real-world networks, such as the collaboration network of scientific authors.

Next, we examine the distribution of the first Betti numbers with different γ, γ′ pa-
rameters. Consistent with Theorem C.2.4, the Q-Q plots illustrate that the distribution
of the first Betti number is asymptotically normal for γ < 1/4 and γ′ < 1/8. Moreover,
we also find that the first Betti number is asymptotically normal for γ ∈ [1/4, 1/2)
and γ′ > 1/8. On the other hand, the Betti number distribution has a fat left tail
when γ > 1/2, in alignment with our conjecture.

Finally, we examine the edge and triangle counts in the network. We found that
the edge counts are normally distributed if γ < 1/2 and γ′ < 1/3, and otherwise, they
have a stable distribution. For the triangle counts, we observe a normal distribution
for γ < 1/2 and γ′ < 1/5, and a stable distribution for γ > 1/2 and γ′ < 1/5. We also
conjecture that the triangle counts follow a stable distribution if γ′ > 1/5.

To investigate the applicability of our results to real-world data, we conduct
hypothesis tests on the arXiv dataset [1], which contains the metadata of scientific
papers published on the arXiv platform. In the dataset, we represent the authors as
P-vertices and the papers as P ′-vertices. Then, we analyze the collaboration network
of four scientific fields: computer science, electrical engineering and systems science,
mathematics, and statistics.

Examining the degree distributions, we found that they are heavy-tailed. Using the
fitted power-law exponents, we fit the model parameters γ and γ′ using Theorem C.2.3.
Then, the network size is fitted so that we compensate for the lack of isolated P-
and P ′-vertices in the dataset.

After the model parameters are fitted, hypothesis tests for the Betti numbers, edge
counts, and triangle counts become available. The datasets are characterized by a
much larger Betti number than the simulated networks, and the hypothesis tests for
the Betti numbers are rejected. The reason is the same as for Paper B: networks
generated by the RCHM are dominated by a couple of very high-degree P-vertices that
leads to a tree-like network topology with a few loops. For the edge and triangle counts,
the results show that the datasets are more complex than the networks generated by
the RCHM.

26



3. Research questions and methods

Methodology

To prove Proposition C.2.2, we examine the common neighborhood of the points in
the typical simplex ∆∗

m. Then, employing Markov’s inequality, the Mecke formula,
and Fubini’s theorem we conclude that the m-simplex intensity λm < ∞ is finite
if γ′ < 1/(m+ 1).

The proof of Theorem C.2.3 follows two steps, namely, we show an upper bound
and a lower bound for the degree distributions. For the upper bound, we write the
probability P(deg(∆∗

m) ⩾ k) as an integral, and then we use a Poisson concentration
inequality for the number of P ′-vertices in the common neighborhood of the points
in ∆∗

m. Next, we show an upper bound for the case when m = 0, and then we
extend this result by bounding the common neighborhood of the points in ∆∗

m by
the pairwise intersections of the individual neighborhoods. For the lower bound, we
define two rectangles in S as a function of the degree k such that if a pair of P- and
a P ′-vertex are in these rectangles, they are surely connected. Lower bounding the
integral representation of the probability P(deg(∆∗

m) ⩾ k) by the integral over the
rectangles yields a lower bound for the degree distribution.

The proof of Theorem C.2.4 is similar to the proof of Theorem B.2.2 in Paper B. We
use again the CLT for Poisson functionals [89, Theorem 3.1] by examining the add-one
cost operator for the mth Betti number in the observation window Sn. In this case,
however, the add-one cost operator is more complex than in Paper B, since we need to
consider the changes for both the cases of added P- and P ′-vertex. More precisely,
let us denote by β(P,P ′) := βn,m(P,P ′) the mth Betti number of the simplicial
complex Ghyp

n (P ∩ Sn,P ′ ∩ Sn). Introduce two special points o := (0, U), o′ := (0,W )
as P- and P-vertices, respectively, we let Ghyp

n,o := Ghyp((P ∪ {o}) ∩ Sn,P ′ ∩ Sn) and
Ghyp
n,o′(P∩Sn, (P ′∪{o′})∩Sn) be the simplicial complexes in the observation window Sn

with the additional P-vertex o and P ′-vertex o′, respectively. Then, the add-one cost
operators for the Betti number are defined by

δ(Ghyp
n , o) := β(Ghyp

n,o )− β(Ghyp
n )

δ(Ghyp
n , o′) := β(Ghyp

n,o′)− β(Ghyp
n ).

We then verify the two conditions of [89, Theorem 3.1] for the add-one cost operators
δ(Ghyp

n , o) and δ(Ghyp
n , o′):

• moment condition: supn⩾1 E[δ(Ghyp
n , o)4] <∞ and

supn⩾1 E[δ(Ghyp
n , o′)4] <∞

• weak stabilization: limn↑∞ δ(Ghyp
n , o) <∞ and limn↑∞ δ(Ghyp

n , o′) <∞.

For the moment condition, we bound the add-one cost operator δ(Ghyp
n , o′) by the degree

of the added P ′-vertex, and then calculate the corresponding expectation. We apply a
similar train of thought for δ(Ghyp

n , o). For the weak stabilization condition, we analyze
the changes in the cycle space and boundary space of the simplicial complex Ghyp

n

caused by adding o and o′. Similarly to Paper B, we show that the number of new
cycles or boundaries created by the new point is bounded. Then, we show that the
change of the Betti number is monotone increasing as n→∞, which implies that the
limit exists.
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To show Theorem C.2.5 (a), we apply the CLT by Whitt [107, Theorem 4.4.3] for
stationary sequences of associated random variables T := T1, T2, . . . , which requires
that

∑
k⩾1 Cov(T1, Tk) < ∞. Following the ideas in Paper B, we write the edge

count Sn as

Sn =
n∑
i=1

Ti :=
n∑
i=1

∑
Pj∈[i−1,i]×(0,1]

deg(Pj),

where deg(Pj) denotes the degree of the point Pj in the bipartite graph Gbip. Then we
show that the covariance Cov(T1, Tk) is finite for k ⩾ 1. To show Theorem C.2.5 (b),
we use Theorem 3.5 stated in Section 3. First we decompose Sn into a sum of degrees
belonging to the P-vertices with marks larger than un := n−2/3 and those with marks
smaller than un:

Sn = S⩾
n + S⩽

n :=
∑

P∈P∩Sn,⩾un

deg(P ) +
∑

P∈P∩Sn,⩽un

deg(P ),

where Sn,⩾u := [0, n]× [u, 1] and Sn,⩽u := [0, n]× (0, u]. Using Chebychev’s inequality
and then bounding the variance, we show that n−γ(S⩾

n − E[S⩾
n ]) converges to 0 in

probability as n→∞. Then, we set µ(u) := E[deg(0, u)],

S(1)
n :=

∑
(X,U)∈P∩Sn,⩽un

µ(U), and S(2)
n :=

∑
i⩽⌈λn⌉

µ(Ui)1
{
Ui ⩽ un

}
,

where {Ui} are i.i.d. uniformly distributed random variables on (0, 1]. Then, we
show that E[|S⩽

n − S(1)
n |] + E[|S(1)

n − S(2)
n |] ∈ o(nγ), and finally the application of

[107, Theorem 4.5.2] leads to the conclusion that n−γ(S(2)
n − E[S(2)

n ]) converges in
distribution to a stable random variable.

To show Theorem C.2.6, we write the m-simplex count Sn,m as

Sn :=
∑

P∈P∩Sn

dm(P ),

where
dm(p) := 1

m!
∑

(P1,...,Pm)∈(P∩S>u)m
̸=

1
{
P ′ ∩B({p, P1, . . . , Pm}) ̸= ∅

}
is the number of m-simplices containing p. For the proof of Theorem C.2.6 (a), we
apply the CLT by Whitt [107, Theorem 4.4.3] once more, extending the result of
Theorem C.2.5 (a). Finally, we show Theorem C.2.6 (b) similarly to Theorem C.2.5 (b).
We choose un = n−b, where b ∈ (2/3, 1), and decompose Sn,m as

Sn,m = S⩾
n,m + S⩽

n,m :=
∑

Pi∈P∩Sn,⩾un

dm(Pi) +
∑

Pi∈P∩Sn,⩽un

dm(Pi).

The first step is showing that the simplex count corresponding to the high-mark
vertices is negligible, i.e., n−γ(S⩾

n,m − E[S⩾
n,m]) converges to 0 in probability. Defining

S(1)
n,m :=

∑
(X,U)∈P∩Sn

µm(U), S(2)
n,m :=

∑
i⩽⌈λn⌉

µm(Ui)1
{
Ui ⩽ un

}
,

with µm(u) := E[dm(0, u)] and {Ui} i.i.d. uniform random variables on (0, 1], we prove
that E[|S⩽

n,m−S(1)
n,m|] +E[|S(1)

n,m−S(2)
n,m|] ∈ o(nγ), and we finish the proof the same way

as in Theorem C.2.5 (b).
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Paper D

In Paper D, in a joint work with Christian Hirsch and Benedikt Jahnel, we study
functional limit theorems in dynamic random connection hypergraphs.

Motivation

Although the models we studied in previous papers describe networks from a static
perspective, real-world networks are dynamic and evolve over time. To understand
the dynamics of complex random systems, we have to examine the temporal evolution
of the system. Thus, establishing functional limit theorems in a random connection
model helps to understand the interdependence of the spatial distribution and network
dynamics of these systems.

In this paper, we equip the random connection hypergraph model (RCHM) from
Paper C with birth-death type dynamics. Then, we prove two functional limit theorems
for the edge count of this model. In particular, we derive a functional normal limit
theorem and a functional stable limit theorem for the edge count of the bipartite
graph.

Model

We begin by defining the dynamic random connection hypergraph model (DRCHM)
from the random connection hypergraph model introduced in Paper C as follows.

Let us consider two spaces S×T := (R×(0, 1])×(R×R+) and S×R := (R×(0, 1])×R.
Furthermore two independent vertices p := (x, u, b, ℓ) ∈ S×T and p′ := (z, w, r) ∈ S×R
are characterized by their coordinates as follows:

• The positions x, z ∈ R and the weights u,w have similar roles to the coordinates
in RCHM.

• The birth time b ∈ R and the lifetime ℓ ∈ R+ of the vertex p govern the temporal
dynamics of the vertex p, while vertex p′ representing interactions is assigned a
single time instant r ∈ R.

Then, a pair of vertices p := (x, u, b, ℓ) ∈ S×T and p′ := (z, w, r) ∈ S×R are connected
if the below two connection conditions hold:

|x− z| ⩽ βu−γw−γ′ and b ⩽ r ⩽ b+ ℓ,

where the model parameters β > 0 and γ, γ′ ∈ (0, 1) governing the first connection
condition have similar roles to the parameters in RCHM. Loosely speaking, the two
conditions mean that the vertices p and p′ are connected if

• spatial condition: their distance is small relative to the product of their weights
raised to the power γ and γ′, and

• temporal condition: the time r of the vertex p′ falls into the time interval
[b, b+ ℓ] assigned to the vertex p.
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time

position

Figure D.2: The horizontal axis represents the time, and the vertical axis
represents the position. P-vertices are represented by intervals of different lengths
and widths, where the width of the interval corresponds to the weight of the
vertex. P ′-vertices are represented by points, and the size of the point corresponds
to the weight of the vertex. Vertical lines mark if a pair of P- and P ′-vertices is
connected.

To visualize the model, we include Figure D.2 from Paper D below.
Then, we define two independent Poisson point processes P and P ′ on the spaces

S× T and S× R, respectively. The coordinates of the points in P and P ′ are denoted
by P := (X,U,B,L) ∈ P and P ′ := (Z,W,R) ∈ P ′. The intensity measure of the
stationary Poisson point process P is µ(dp) = µ(dx,du,db,dℓ) := d(x, u, b)PL(dℓ),
which is the Lebesgue measure for the position, weight and birth time components, and
the distribution PL of the lifetime of the P-points is characterized by the exponential
measure with parameter 1. Furthermore, the point process P ′ is also stationary with
Lebesgue intensity measure d(z, w, r).

Main results

To state our main results, we first define the neighborhood N(p; t) of a point p ∈ S×T
as the domain in S× R in which P ′-points connect to p up to time t.

N(p; t) := {(z, w, r) ∈ S× R : |x− z| ⩽ βu−γw−γ′
, b ⩽ r ⩽ t ⩽ b+ ℓ}.

Note that the neighborhood N(p; t) is empty if the point p is not alive at time t, i.e.,
if t /∈ [b, b+ ℓ]. Using the definition of the neighborhood, we define the degree deg(p; t)
of point p at time t as the number of P ′-points in the neighborhood N(p; t):

deg(p; t) :=
∑
P ′∈P ′

1{P ′ ∈ N(p; t)}.

Then, the edge count and the normalized edge count are defined by the sum of the
degrees of the points in the spatial window [0, n]:

Sn( · ) :=
∑

P∈P∩(Sn×T)
deg(P ; · ) and Sn( · ) := n−1/2(Sn( · )− E[Sn( · )]),

where Sn := [0, n]× (0, 1] is the observation window. The main results of this paper
are two functional limit theorems for the edge count Sn( · ) when the size n of the
observation window grows.

30



3. Research questions and methods

First, we state a univariate normal limit for the edge count Sn(t) at a fixed time
point t.

Proposition D.2.1 (Univariate normal limit of edge count). Let γ, γ′ < 1/2. Then,
for all t ∈ R, the normalized edge count Sn(t) converges weakly to a normal distribution,
as n→∞.

The limiting covariance function of Sn(t) in the thin-tailed case is given by

Proposition D.2.2 (Limiting covariance function of Sn). Let γ, γ′ < 1/2. Then, for
all t1 < t2, the limiting covariance function of the edge count Sn is given by

lim
n↑∞

Cov
(
Sn(t1), Sn(t2)

)
=

(
c1 + c3 + c2(2 + t2 − t1)

)
e−(t2−t1),

where c1 = 2β
(1−γ)(1−γ′) , c2 = (2β)2

(1−2γ)(1−γ′)2 , and c3 = (2β)2

(1−γ)2(1−2γ′) .

The limiting covariance function describes a continuous-time AR(2) process, and it
has the form of a Matérn covariance function with appropriate parameters.

Next, we show a multivariate normal limit for the edge counts Sn(t1), . . . , Sn(tk)
at k fixed time points t1, . . . , tk.

Proposition D.2.3 (Multivariate normal limit of the edge count). Let γ < 1/2 and
γ′ < 1/3. Then, for all k ∈ Z+ and t1, . . . , tk ∈ R, the vector of normalized edge
counts (Sn(t1), . . . , Sn(tk)) converges weakly to a multivariate normal distribution, as
n→∞.

Our first functional limit theorem for the edge count Sn( · ) is stated as follows.

Theorem D.2.4 (Functional normal limit of edge count). Let γ, γ′ < 1/4, and let
X := {X(t) : t ⩾ 0} denote a Gaussian process with a covariance function specified in
Proposition D.2.2. Then,

Sn( · ) d−−−→
n↑∞

X( · )

in the Skorokhod space D([0, 1],R).

We also conjecture that Theorem D.2.4 could be proved for the larger domain γ ∈
(0, 1/2) as well.

As in the model from Paper C, the variance of the univariate distribution of the
edge count Sn(t) diverges as n→∞ if γ > 1/2. Thus, if γ > 1/2, we redefine Sn( · )
as follows:

Sn( · ) := n−γ(Sn( · )− E[Sn( · )]).

Even though we use the same symbol Sn( · ) for two different scalings of the edge count
Sn( · ), since they are used in different contexts, it is always clear which scaling we
refer to.
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Before stating our second functional limit theorem, we need to define further
concepts. Let ν be the measure on J := [0,∞) defined by ν([ε,∞)) := ((2β)/(1 −
γ′))1/γε−1/γ , and let P∞ denote the Poisson point process on J × T with intensity
measure ν ⊗ Leb⊗ PL. In P∞, the component J is related to the limiting scaled size
of the spatial neighborhoods of the points in P. We also define the edge counts

S∗
ε ( · ) :=

∑
(J,B,L)∈P∞

J( · −B)1{J ⩾ c̃εγ}1{B ⩽ · ⩽ B + L}

S
∗
ε( · ) := S∗

ε ( · )− E[S∗
ε ( · )],

where c̃ := 2β/(1−γ′) and E[S∗
ε ( · )] = c̃1/γε−(1/γ−1)/(1−γ). Note that S∗

ε (t) aggregates
the contributions from all points in the Poisson process P∞ whose spatial neighborhoods
are sufficiently large and that are alive at time t. Each such point contributes to the
sum by the scaled size J of its spatial neighborhood multiplied by the length of time
it is alive at time t. With these definitions at hand, the functional limit theorem for
the edge counts when γ > 1/2 is as follows.

Theorem D.2.6 (Functional stable limit of edge count). Let γ > 1/2 and γ′ < 1/4.
Then, the limit S( · ) := limε↓0 S

∗
ε( · ) exists in the Skorokhod space D([0, 1],R), and

the centered edge-count process Sn( · ) converges weakly to the process S( · ) in the
Skorokhod space D([0, 1],R).

Note that the limiting process S( · ) is not a Lévy process, and it is not even
Markov. This is so because the edge count Sn(t) and its limit does not contain all the
information necessary to predict the process. If a single vertex with many edges dies,
all its edges disappear simultaneously. On the other hand, if there are many vertices
with a few edges each, the edge count may be identical to the earlier case, but edges
will not disappear at once. Similarly, one can argue that the increments of the process
S( · ) are not independent.

Methodology

In this section, we present the main proof techniques used in the proofs. The content
of this section is a summary of Sections D.3–D.11 in Paper D, where the proof outlines
are given in more detail.

For some Borel sets X ,U ,B,D ⊆ R, we introduce the notations

SX := {(x,u) ∈ S : x ∈ X}, SU := {(x,u) ∈ S : u ∈ U }, SU
X := SX ∩ SU ,

TB := {(b, ℓ ) ∈ T : b ∈ B }, TD := {(b, ℓ ) ∈ T : b+ ℓ ∈ D}, TD
B := TB ∩ TD,

and employ the shorthand notations for Tt2⩽⩽t1 = T(t2,∞)
(−∞,t1], T

[t1,t2]
⩽t1 = T[t1,t2]

(−∞,t1] and Tt2⩽⩽t2 =
T(t2,∞)

(−∞,t2].
The univariate normal limit CLT stated in Proposition D.2.1 is presented using

the same idea as in the proof of the CLT for the edge count in RCHM from Papers B
and C. Namely, we apply the CLT by Whitt [107, Theorem 4.4.3] for associated random
variables to show that the edge count converges to a Gaussian distribution. First, we
show that the mean and the variance of the edge count converge to finite values. Then,
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we partition the spatial component of the domain Sn × T to intervals of length one
and define a sequence of associated random variables {Ti} by setting

Ti :=
∑

P∈P∩(S[i−1,i]×T)
deg(P ; t) Sn =

n∑
i=1

Ti.

Showing that
∑
k⩾2 Cov(T1, Tk) <∞, the application of the CLT for associated random

variables concludes the proof.
To show Proposition D.2.2, we decompose the edge counts Sn(t1) and Sn(t2) for

t1 ⩽ t2 into three parts

SA
n (t1, t2) :=

∑
P∈P∩(Sn×Tt2⩽

⩽t1
)

deg(P ; t1)

SB
n (t1, t2) :=

∑
P∈P∩(Sn×T[t1,t2]

⩽t1
)

deg(P ; t1)

SC
n (t1, t2) :=

∑
P∈P∩(Sn×Tt2⩽

⩽t2
)

∑
P ′∈P ′

1{P ′ ∈ N(P ; t2)}1{t1 ⩽ R},

which are visualized in Figure D.3, also included here from the paper for easier reference.
Then, we have the following decomposition:

Sn(t1) = SA
n (t1, t2) + SB

n (t1, t2) and Sn(t2) = SA
n (t1, t2) + SC

n (t1, t2).

Next, writing the covariance function with the help of the above decomposition, we
compute the limit of each term separately, and sum the results to obtain the limiting
covariance function of Sn( · ).

To prove Proposition D.2.3, we would like to apply [97, Theorem 1.1], which
bounds the d3 distance of the distribution of Poisson functionals and the normal
distribution by the sum of three error terms E1(n), E2(n), E3(n). Then, to show that
the finite-dimensional distribution of the edge count converges to a multivariate normal
distribution, we need to show that these error terms converge to 0 in probability
as n → ∞. This, however, can only be shown for γ < 1/3 for the error term E3(n).
To enlarge the range of γ to γ < 1/2, we apply a low-mark / high-mark decomposition
Sn( · ) = S⩾

n ( · ) + S⩽
n ( · ) with

S⩾
n ( · ) :=

∑
P∈P∩(Sun⩽

n ×T)

deg(P ; · ) and S⩽
n ( · ) :=

∑
P∈P∩(S⩽un

n ×T)

deg(P ; · ),

where un := n−2/3 is a mark that depends on the window size n. We apply a two-step
strategy: first, we show that the low-mark edge count is negligible, and then we employ
[97, Theorem 1.1] to the high-mark edge count S⩾

n ( · ). To apply [97, Theorem 1.1], we
first need to show that the covariance function of the centered and scaled high-mark
edge count S⩾

n converges. Then, we prove that the error terms E1(n), E2(n), E3(n)
converge to 0 in probability as n → ∞ whenever γ < 1/2, which involves bounding
certain expressions of the add-one and add-two cost operators.
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To show that Theorem D.2.4 holds, we need to show convergence of the finite-
dimensional distributions of the process and that the process is tight. The tightness
criterion is shown by applying [26, Theorem 2]. Since this theorem requires nonde-
creasing processes, we need to decompose the edge count Sn( · ) into the difference
Sn = S+

n − S−
n , which we call the plus-minus decomposition of the edge count.

To introduce the plus-minus decomposition, we first define the spatial part ps :=
(x, u) and the temporal part pt := (b, ℓ) of a point p := (x, u, b, ℓ) ∈ S × T, and we
denote by p′

s := (z, w) the spatial part of a point p′ := (z, w, r) ∈ S × R. Then, we
define the spatial and temporal neighborhoods of a point p ∈ S× T as follows:

Ns(ps) := {(z, w) ∈ S : |x− z| ⩽ βu−γw−γ′}
Nt(pt, t) := {r ∈ R : b ⩽ r ⩽ t ⩽ b+ ℓ},

and then N(p; t) = Ns(ps)×Nt(pt; t). The plus and minus neighborhoods of a point
p ∈ S× T are defined as

N+(p; t) := Ns(ps)×N+
t (pt; t) and N−(p; t) := Ns(ps)×N−

t (pt; t),

where
N+

t (pt; t) :=
{
{r ∈ R : b ⩽ r ⩽ b+ ℓ} if b+ ℓ ⩽ t
{r ∈ R : b ⩽ r ⩽ t} if b+ ℓ > t

N−
t (pt; t) :=

{
{r ∈ R : b ⩽ r ⩽ b+ ℓ} if b+ ℓ ⩽ t
∅ if b+ ℓ > t.

Note that both neighborhoods N+(p; t) and N−(p; t) are monotone increasing in t.
Also, observe that with

deg+(P ; t) :=
∑
P ′∈P ′

1{P ′ ∈ N+(P ; t)} and

deg−(P ; t) :=
∑
P ′∈P ′

1{P ′ ∈ N−(P ; t)},

we have that deg(P ; t) = deg+(P ; t) − deg−(P ; t). The plus-minus decomposition
Sn = S+

n − S−
n of the edge count is then defined as

S+
n (t) :=

∑
P∈P∩(Sn×T0⩽)

deg+(P ; t) and S−
n (t) :=

∑
P∈P∩(Sn×T0⩽)

deg−(P ; t),

where T0⩽ := T[0,∞) is the domain for which the death time b+ ℓ ⩾ 0. Note that the
sums consider only points P ∈ P whose lifetime [B,B + L] intersects the temporal
interval [0, 1].

Then, we apply [26, Theorem 2] for the normalized edge counts

S
+
n := n−1/2(S+

n − E[S+
n ]) and S

−
n := n−1/2(S−

n − E[S−
n ])

separately. We restate the theorem here.
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Theorem D.6.2 (Specialized version of Davydov’s theorem). Let an → 0 be a
sequence of positive numbers converging to 0, and set tk := kan for k = 0, 1, . . . , kn
with kn = ⌊1/an⌋ and tkn+1 = 1. Then, if S±

n ( · ) are nondecreasing processes defined
on the interval [0, 1] such that

(1) the finite-dimensional distributions of the processes S±
n ( · ) converge to the finite-

dimensional distribution of a limiting process S±
∞( · ),

(2) there exists some constants χ1, χ2 > 1 such that

E
[∣∣S±

n (t)− S±
n (s)

∣∣χ1
]
∈ O(|t− s|χ2)

for all n if |t− s| ⩾ an, and

(3) for the limit of the expected increments, we have

lim
n↑∞

max
k⩽⌊1/an⌋

∣∣∣E[
S

±
n (tk+1)

]
− E

[
S

±
n (tk)

]∣∣∣ = 0,

then S±
∞( · ) is almost surely continuous and the sequence S±

n ( · ) converges in distribu-
tion to S±

∞( · ).

To show Condition (1) of Theorem D.6.2, we follow the same strategy as in the
proof of Proposition D.2.3. Condition (2) is shown after setting χ1 := 4, χ2 := 1 + η
and an := n−1/(1+η) for some η > 0 by bounding the fourth moments of the increments
using cumulants. Finally, Condition (3) is shown by bounding the expected increments
of the edge count S±

n (t).
In the proof of Theorem D.2.6, we need to deal with the infinite-variance regime

γ > 1/2. We make use of the low-mark / high-mark decomposition of the edge count
introduced earlier in the context of Proposition D.2.3, and denote the low-mark edge
count by S(1)

n := S⩽
n to ensure consistency with the notation used in the proof of

Theorem D.2.6. In the heavy-tailed case γ > 1/2, we use the scaling n−γ instead of
n−1/2 to normalize the edge counts:

S
⩾
n ( · ) := n−γ(

S⩾
n ( · )− E[S⩾

n ( · )]
)
,

S
(1)
n ( · ) := n−γ(

S(1)
n ( · )− E[S(1)

n ( · )]
)
.

We split the proof into two parts. In the first part, we show that the high-mark
edge count is negligible, and in the second part, we show that the low-mark edge count
converges to a stable process.

Step 1. In Step 1, we show that if γ > 1/2 and γ′ < 1/4, then S⩾
n ( · ) → 0 in the

Skorokhod space D([0, 1],R) as n→∞.

35



Introduction

Step 2. Next, in Step 2, the low-mark edge count S(1)
n is approximated by S(2)

n

defined by
S(2)
n ( · ) :=

∑
P∈P∩(Sn×T)

E
[
deg(P ; · )

∣∣ P ]
1{U ⩽ un}.

Note that the conditional expectation is the size of the neighborhood of the point P ,
and the indicator function restricts the points to those with small marks. This
approximation step is done by showing that the supremum norm of the difference
between the two edge counts converges to 0 in probability. Note that the spatial
correlations of the degrees are eliminated in S(2)

n . The first part of the proof is
concluded here.

For the second part, first recall the definition of the measure ν, the Poisson point
process P∞, and the edge counts S∗

ε and S from Theorem D.2.6. We would like to
show that S(2)

n converges in distribution to S as n→∞. For all n, ε > 0, we define

S(3)
n,ε( · ) :=

∑
P∈P∩(Sn×T)

E[deg(P ; · ) | P ]1{U ⩽ 1/(εn)}.

We divide the second part of the proof into three steps, which are illustrated in
Figure D.5 taken from the paper. These steps follow [93, Sections 5.5 and 7.2].

Step 3. In Step 3, we show that S(3)
n,ε converges to S(2)

n with respect to the Skorokhod
distance in the space D([0, 1],R) as ε→ 0, uniformly for all n. First, we bound the
Skorokhod distance dSk by the supremum metric. Then, we apply again the plus-minus
decomposition to the edge count S(3)

n,ε which leads to the sum of a continuous process
S(3),+
n,ε , which can be written as a sum of integrals and a martingale S(3),−

n,ε . Then, the
edge count of the heaviest vertices approximates the total edge count.

Step 4. In Step 4, we show that the edge count S(3)
n,ε converges in distribution to S∗

ε

in D([0, 1],R) as n→∞. We note that S(3)
n,ε and S∗

ε are defined on different probability

goal

ε
→

0
(∀
n

)
un

ifo
rm

ly

St
ep

3

n→∞

Step 4

St
ep

5

ε
→

0

S
(2)
n

S
(3)
n,ε

S

S
∗
ε

Figure D.5: Main steps of the second part of the proof of Theorem D.2.6. Step 3
shows that S(3)

n,ε converges to S(2)
n as ε → 0 uniformly for all n. Step 4 shows

convergence of S(3)
n,ε to S∗

ε as n → ∞. Finally, Step 5 shows that S∗
ε converges

to S as ε→ 0.
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spaces. First, we show that nP(n−γ |Ns(Ps)| ∈ [ · ,∞)) converges vaguely to a Lévy
measure as n→∞. The contributions n−γ(|N(P ; t)| − E[|N(P ; t)|]) of single points
to the sum S(3)

n,ε(t) are i.i.d. Then,

∑
P∈P∩(Sn×T)

δ(n−γ |Ns(Ps)|,B,L)
d−−−→

n↑∞
PPP(ν ⊗ Leb⊗ PL),

where PPP(ν ⊗ Leb⊗ PL) is a Poisson point process on J× T with intensity measure
ν ⊗ Leb ⊗ PL. Note that vague convergence requires the state space to be locally
compact. On the other hand, since the size of the neighborhood |Ns(Ps)| is unbounded,
n−γ |Ns(Ps)| can become arbitrarily large. Thus, our state space is not locally compact
unless we compactify it at ∞. This means that instead of working on [0,∞), we
restrict to the domain (0,∞] so that ∞ becomes a boundary point. Considering
S(3)
n,ε, the domain of the marks is restricted to [0, 1/(εn)], and the domain of the birth

and lifetimes are restricted so that the interval [B,B + L] intersects [0, 1]. Then, we
examine the summation functional∑
(J,B,L)∈P∞∩([c̃εγ ,∞)×T)

δ(J,B,L) 7→
∑

(J,B,L)∈P∞

J( · −B)1{J ⩾ c̃εγ}1{B ⩽ · ⩽ B + L},

where c̃ > 0 is a constant depending on the model parameters β, γ, γ′. The primary
objective of this step is to show that the summation functional is continuous with respect
to the Skorokhod metric. Using this partial result, it follows that n−γS(3)

n,ε( · )→ S∗
ε ( · )

in distribution as n→∞. Finally, we show that the expectation of the edge count S∗
ε

is finite and given by E[S∗
ε ] = c̃ε−(1−γ)/(1− γ).

Step 5. In Step 5, we show that S∗
ε → S almost surely as ε→ 0 in D([0, 1],R). We

begin by showing almost sure convergence for fixed time points as ε→ 0. Then, we
show that the convergence is almost surely uniform in the supremum norm on [0, 1].
First, we prove that the sequence S∗

εn
is Cauchy in probability with respect to the

supremum norm, where εn → 0 is a decreasing sequence of positive numbers. Finally,
we show that limε↓0∥S∗

ε − S∥ = 0 almost surely, and the limit S is almost surely in
D([0, 1],R).

4 Computational framework

Introduction

In this section, we introduce the simulation framework that was developed to comple-
ment the theoretical analysis in Papers B and C. The program presented was applied
for various tasks.

• First, it was used as a Monte Carlo simulation tool to show convergence rates
of theorems proved for the large network limit. This was necessary to validate
the application of our theoretical results in real-world scenarios, in which the
network size is finite.
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• Using this framework, we verified those conjectures for distributions of topological
quantities that are not proven in the papers.

• Finally, the program was used to analyze and test real-world datasets, including
the estimation of corresponding model parameters, hypothesis testing, and
network plotting.

The source code of the simulation framework is made publicly available in the
GitHub repository [50] to ensure reproducibility and transparency.

Design, architecture

The simulation framework is designed to handle large-scale networks efficiently, lever-
aging parallel processing capabilities to ensure rapid computation even for extensive
simulations.

Due to the complexity of the models and the need for efficient computation, the
software consists of several components, whose dependency structure is illustrated in
Figure 8. Please note that the presentation of the module structure is simplified; the
actual implementation contains more modules and classes.

The computationally intensive parts of the simulation are implemented in C++
to ensure high performance and efficient parallelization, while the user interface and
data handling are done in Python. The communication between the two languages
is facilitated by the pybind11 library, which allows for integration of C++ algorithms
into Python scripts.

The C++ code consists of approximately 4200 source lines, and it is organized into
two main modules: CppModel and CppNetwork, the former serving as a factory for the
latter. The CppModel module is responsible for generating the random higher-order
graphs based on various models, and its class hierarchy is illustrated in Figure 9.

Simulation Engine

C++ Core

CppModel

CppNetwork

Python Code

Model

Network

Distribution

Visualization

Figure 8: High level overview of the software architecture. Arrows point in the
directions of dependencies.
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CppModel Model

FiniteModel PalmDistribution ADRCM Hypergraph

FiniteADRCM FiniteHypergraph PalmADRCM PalmHypergraph

Figure 9: Class diagram of the C++ module. The CppNetwork module mirrors the
structure of the CppModel module: each class in the former has a corresponding
class in the latter. The classes in the bottom row inherit from exactly two of the
classes in the middle row by employing multiple inheritance.

The specific network models inherit from the interface class Model to ensure a
consistent API and allow for easy extension with new models. The module is capable
of generating both finite networks and Palm distributions free from boundary effects,
for both models presented in Papers B (ADRCM) and C (Hypergraph). The CppNetwork
efficiently computes topological features, including Betti numbers, degree distributions,
and simplex counts, and its class hierarchy mirrors that of the CppModel module.

The Python code, consisting of approximately 5000 source lines of code, is respon-
sible for providing the user interface, loading the datasets represented as networks,
and visualizing the results. When designing this part of the software, we aimed to
delegate most of the computationally intensive tasks to the C++ code, while keeping the
Python code as lightweight as possible. The probability distributions of the computed
characteristics are estimated using the scipy.stats library [105] in Python.

The software was tested through unit tests using the unittest framework of
Python. We further validated the program by comparing Monte Carlo simulation
results against known theoretical distributions for various quantities in increasing
network sizes, including higher-order degrees, edge counts, and Betti numbers.

Implementation

The generation of a finite random network has the following steps:

(1) first, random points are generated with positions and marks according to the
model parameters;

(2) then, we determine which of the points are connected.

The second step is the most computationally intensive part of the network generation
step, since it involves checking the connection condition for each pair of points. This
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step is therefore optimized in two ways, which are described below in case of the
Hypergraph model. First, the marks of the points are transformed in a model-specific
manner to enable the efficient computation of the connection kernel. Second, the
state space is partitioned into rectangles, which is visualized in Figure C.1 taken from
Paper C.

position

mark

Figure C.1: Partition of the state space into rectangles

The transformed points are then assigned to the rectangles into which they fall.
Note that the dimensions of the rectangles are chosen optimally to minimize the
number of distance calculations, which is detailed in Paper C. Using the properties of
the simulated models, it can be inferred that if all corners of a pair of rectangles satisfy
the connection condition, then we can assume that all points within the rectangles
are connected, and we can form edges between each pair of points. Conversely, if
none of the corners of a pair of rectangles fulfill the connection condition, then we
can assume that no points in the rectangles are connected. Then, we only need to
check the connection condition between points in pairs of rectangles that do not fall
into either of the above two categories. Note that the connections can be generated
similarly to the ADRCM model.

For the Palm distributions, the algorithm is similar, but not the same:

(1) first, a typical object—point, or simplex—is generated;

(2) next, the neighborhood of the typical object in which other points can influence
it is determined;

(3) finally, further points and simplices are generated in the neighborhood of the
typical object according to the model parameters.

The generation of these neighborhoods is specific to the simulated model. The
above three steps are repeated several times to generate a sufficiently large sample of
characteristics for the typical objects.

In the case of the CliqueComplex networks generated by the ADRCM model, the soft-
ware employs the SimplexTree data structure from the GUDHI library [15] to compute
all relevant characteristics. Note that, for clique complexes, the SkeletonBlocker
data structure would be more appropriate; however, it lacks the necessary function-
ality to compute all the characteristics we need. The Hypergraph model, on the
other hand, generates hypergraphs whose hyperedges provide an inherent higher-order
structure for the generated networks. Thus, to calculate higher-order degrees and
simplex counts, the Hypergraph network class uses a list of these interactions, called
SimplexList for computations instead of the heavier SimplexTree data structure.
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Then, the SimplexTree is built only on demand from the list of hyperedges when
Betti numbers need to be computed.

Next, we describe how the higher-order degree distributions are computed in the
Hypergraph model. Since the SimplexTree data structure is too memory-intensive
and slow for our purposes, we use a custom algorithm to compute the higher-order
degrees. The algorithm is described in Algorithm 1, and it is based on the following
ideas. We are interested in the distribution of the number of m-simplices neighboring

Algorithm 1 Computation of the higher-order degree distribution
Require: Hypergraph H, integers n,m with 0 ⩽ n < m
Ensure: Distribution of the number of m-simplices adjacent to each n-simplex

1: procedure calc_higher_order_degree_distribution(H,n,m)
2: if n > 0 then
3: P ← partition(H,n) ▷ no q-simplices (q ⩾ n−1) in

⋃
Pi,Pj∈P
i ̸=j

{Pi ∩ Pj}

4: else
5: P ← connected_components(H)
6: end if

7: for all part P ∈ P do
8: Sn, Sm ← ∅ ▷ Sn, Sm represented by C++ std::unordered_set
9: for all hyperedge H ∈ P do

10: generate n-, m-faces of H ▷ use for_each_combination
11: update Sn, Sm with n-, m-faces
12: end for

13: degree_distribution ← ∅ ▷ represented by C++ std::unordered_map
14: for all σm ∈ Sm do
15: for all σn ∈ Sn do
16: if σn ⊂ σm then ▷ use Bloom filter to check membership
17: ++ degree_distribution[σn]
18: end if
19: end for
20: end for
21: end for

22: return degree_distribution
23: end procedure

n-simplices, where 0 ⩽ n < m. We begin by partitioning the hypergraph into
parts that do not share n − 1 or higher-dimensional simplices. If n = 0, then we
partition the hypergraph into connected components. Note that after partitioning,
the different parts of the hypergraph are independent, and we can compute the
higher-order degree distribution for each part separately. Next, we generate all
n- and m-simplices. To generate simplices of a given dimension, the SimplexList
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class employs the for_each_combination function from the HinnantCombinations
library [47], capable of efficiently generating combinations of elements. These simplices
are collected in the C++ std::unordered_set data structure, which utilizes a custom
hash function to ensure efficient membership testing and fast lookups. For each possible
m-simplex, the algorithm checks whether the simplex at hand is its face. This is done
by associating each m-simplex with a 64-bit Bloom filter [14] containing the vertices
of the simplex at hand, which allows for membership testing at low computational
cost. Then, for each n-simplex, we check which of the m-simplices are its neighbors.
The higher-order degree distribution is computed by using the std::unordered_map
data structure, which stores the simplices as keys, and utilizes the same hash function
used for the simplex generation step. All parts of the above algorithm are highly
parallelized wherever possible.

Note that the above algorithm only has an advantage over the SimplexTree
data structure in the case of sparse hypergraphs, where the number of simplices is
significantly smaller than the number of vertices. In the case of dense hypergraphs, the
SimplexTree data structure is more efficient, since it can compute the higher-order
degree distribution in a single pass over the simplices.

5 Toy example: the Boolean model
In this section, the main methods of the papers are presented in the context of the
Boolean model. Note that the model presented here is neither a special case of the
models studied in the papers nor a prerequisite for understanding the results. However,
this standalone model serves as a simple example to demonstrate the proof techniques
applied in multiple papers included in this thesis, with less technical complexity.

Definition of the model

Let P denote a stationary Poisson point process on R with intensity λ, and we will
connect points P1, P2 ∈ P if their distance |P1 − P2| is less than or equal to β. We
define the neighborhood N(p) ⊆ R of a point p ∈ R as the set of points in the R that
are within distance β from p:

N(p) := {p′ ∈ R \ {p} : |p− p′| ⩽ β}, |N(p)| = 2β.

In this model, the set Σm of m-simplices is defined as the family of m+ 1-tuples of
points in the Poisson point process P in which each pair of points is connected:

Σm := Σm(P) :=
{
{P0, P1, . . . , Pm} ⊆ Pm+1

̸= : max
i,j∈{0,...,m}

|Pi − Pj | ⩽ β
}
.

That is, Σm contains m-simplices that are elements of the clique complex of the graph
whose vertices are the points in the Poisson point process P and edges are the pairs of
points that are connected. Furthermore, Σ := Σ(P) :=

⋃
m Σm(P) denotes the family

of all simplices.
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Palm distribution of the typical simplex

We let Nloc denote the family of all locally finite subsets of R, and let Cm denote
the distinct (m + 1)-tuples of points in R. Then, we define the center function
c : Cm → R to be the leftmost point in a set {p0, . . . , pm} ∈ Cm of m + 1 points:
c({p0, . . . , pm}) := mini∈{0,...,m} pi. Next, we define the Palm distribution of the typical
m-simplex ∆∗

m.

Definition 5.1 (Typical m-simplex). Let f : Cm ×Nloc → [0,∞) be a measurable,
translation invariant function that is symmetric in its first m+ 1 arguments. Then,
the expectation of f with respect to the Palm distribution of the typical m-simplex ∆∗

m

is defined as

E
[
f(∆∗

m,P)
]

= 1
λm

E
[ ∑

∆m∈Σm(P)
1{c(∆m) ∈ [0, 1]}f(∆m − c(∆m),P − c(∆m))

]
,

where λm is the intensity of the m-simplices.

We can apply Mecke’s formula [107, Theorem 4.2.1] to the above expectation. To
do so, let om := (o0, o1, . . . , om) ∈ Cm, and let gm : Cm → {0, 1} be the indicator that
a set of m + 1 points form an m-simplex. Then, we rewrite the expectation of the
typical m-simplex as

E
[
f(∆∗

m,P)
]

= 1
λm

∫
Rm+1

1{c(om) ∈ [0, 1]}E
[
f(om,P ∪ om)

]
gm(om) dom.

Proposition 5.2 (Palm distribution of the typical m-simplex). The Palm distribution
of the typical m-simplex ∆∗

m exists.

Proof. To ensure that the Palm distribution exists, we need to show that the denomi-
nator λm is finite.

λm = E
[ ∑

∆m∈Σm(P)
1{c(∆m) ∈ [0, 1]}

]
= λm+1

∫
Rm+1

1{c(om) ∈ [0, 1]}gm(om) dom,

where we applied Mecke’s formula in the second step. As gm is symmetric in its
arguments, we assume without loss of generality that c(om) = o0. Next, we apply
translation invariance to shift the points by o0. Then, with o′

m := (o1−o0, . . . , om−o0),
Fubini’s theorem yields

λm = λm+1
∫

[0,1]

∫
Rm

gm({0} ∪ o′
m) do′

m do0 = λm+1
∫

[0,β]m
do′

m = λm+1βm <∞,

where we used that the points within the neighborhood [0, β] of the leftmost point,
now shifted to the origin, are connected.

Higher-order degree distribution

Next, we study the higher-order degree distribution of the Boolean model. For
simplicity, we first examine the ordinary degree distribution. The degree deg(p) :=
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deg(p,P) := P(N(p)) of a point p ∈ R is defined as the number of points in P that are
in the neighborhood of p. Due to the properties of the Poisson point process, the degree
of a point p is Poisson distributed with parameter λ|N(p)| = 2λβ. For m′ > m, we
define the higher-order simplex degree degm′ : Σ×P → N as the number of m′-simplices
that are cofaces of a simplex in Σm′ :

degm′(∆) :=
∣∣{σ ∈ Σm′ : ∆ ⊆ σ, |σ| = m′ + 1}

∣∣,
and the higher-order degree distribution dm,m′(k) := P(degm′(∆∗

m) ⩾ k) as the proba-
bility that the higher-order degree degm′(∆∗

m) of the typical m-simplex ∆∗
m is greater

than or equal to k. Furthermore, for a point p ∈ R, let N⩽(p) := (p, p + β) denote
the part of the neighborhood of point p which is to the right of the point itself. The
neighborhood N({p0, . . . , pm}) of a set of points {p0, . . . , pm} ∈ Cm is defined by the
intersection of the neighborhoods N({p0, . . . , pm}) :=

⋂m
i=0N(pi) of the points in the

set. Next, we introduce the relation f ≍ g for two functions f, g, denoting that there
exist constants c1, c2 > 0 such that c1g(k) ⩽ f(k) ⩽ c2g(k) for all sufficiently large k.

Theorem 5.3 (Higher-order degree distribution). Let m′ > m ⩾ 0 be integers. Then,

log
(
dm,m′(k)

)
≍ −k1/(m′−m) log(k1/(m′−m)),

Interestingly, the decay of the higher-order degree distribution is slower for larger
values of m′. The reason is that although the ordinary degree distribution d0,1 has an
exponential decay due to the properties of the Poisson distribution, but the number of
m′-simplices is increasing in the number of points in the common neighborhood N(∆∗

m).

Proof of Theorem 5.3. Without loss of generality, we assume that the points of the
typical m-simplex ∆∗

m = {P0, . . . , Pm} are ordered, i.e., c(∆∗
m) = P0. Then, N(∆∗

m)
the common neighborhood N(∆∗

m) of the points P0, . . . , Pm is determined by P0, since
all points P ∩N⩽(P0) are connected, and thus

N(∆∗
m) ⊆ [P0 − β, P0 + β], |N(∆∗

m)| = P0 + β − (Pm − β) ∈ [β, 2β].

The number of points P(N(∆∗
m)) of the common neighborhood of the vertices of ∆∗

m

is a Poisson random variable with parameter λ|N(∆m)|. To form an m′-simplex whose
m-face is ∆∗

m, we need to choose m′ −m vertices from P ∩N(∆∗
m).

Upper bound. First, we bound
( n
m

)
⩽ (en/m)m on the binomial coefficient:

dm,m′(k) = P(degm′(∆∗
m) ⩾ k) = P

((P(N(∆∗
m))

m′ −m

)
⩾ k

)
⩽ P

((
e P(N(∆∗

m))
m′ −m

)m′−m
⩾ k

)
= P

(
P(N(∆∗

m)) ⩾ m′ −m
e k1/(m′−m)

)
.

Next, introducing c(k) := (m′ − m) k1/(m′−m)/e we derive a Chernoff bound. For
any t > 0,

dm,m′(k) ⩽ P
(
P(N(∆∗

m)) ⩾ c(k)
)

= P
(
exp

(
tP(N(∆∗

m))
)
⩾ exp

(
tc(k)

))
⩽ exp

(
−tc(k)

)
E

[
exp

(
tP(N(∆∗

m))
)]
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where we applied Markov’s inequality in the last step. Then, we apply the definition
of the Palm distribution of the typical m-simplex:

dm,m′(k) ⩽ e−tc(k)

λm

∫
Rm+1

1{c(om) ∈ [0, 1]}E
[
exp

(
tP(N(om))

)]
gm(om) dom.

To calculate the expectation, we use that P(N(om)) is Poisson distributed with
parameter λ|N(om)|. Thus, the moment generating function of the Poisson distribution
yields

dm,m′(k) ⩽ e−tc(k)

λm

∫
Rm+1

1{c(om) ∈ [0, 1]} exp
(
λ|N(om)|(et − 1)

)
gm(om) dom.

We assume without loss of generality that c(om) = o0 by the symmetry of the
integrand, and use translation invariance to shift the points by o0. Then, with
o′
m := (o1 − o0, . . . , om − o0) ∈ Rm, Fubini’s theorem yields

dm,m′(k) ⩽ e−tc(k)

(m+ 1)λm

∫ 1

0

∫
Rm

exp
(
λ|N({0} ∪ o′

m)|(et − 1)
)
gm({0} ∪ o′

m) do′
m do0

⩽
exp

(
2βλ(et − 1)− tc(k)

)
(m+ 1)λm

∫ 1

0

∫
[0,β]m

do′
m do0

=
exp

(
2βλ(et − 1)− tc(k)

)
(m+ 1)λm+1 ,

where we used that |N({0} ∪ o′
m)| ⩽ 2β in the second step. We optimize over t to

minimize the right-hand side. Setting t = log(c(k)/(2βλ)), which is positive for a large
enough c(k), we have

dm,m′(k) ⩽ e−2βλ

(m+ 1)λm+1 exp
(
−c(k)

(
log

(c(k)
2βλ

)
− 1

))
.

Then, taking the logarithm, we obtain

log
(
dm,m′(k)

)
⩽ −2βλ− log((m+ 1)λm+1)− c(k)

(
log

(c(k)
2βλ

)
− 1

)
≍ −c(k) log(c(k)) ≍ −k1/(m′−m) log(k1/(m′−m)).

Lower bound. We are following a similar strategy for the lower bound. For the
binomial coefficient,

( n
m

)
⩾ (n/m)m, and then

dm,m′(k) = P(degm′(∆∗
m) ⩾ k) = P

((P(N(∆∗
m))

m′ −m

)
⩾ k

)
⩾ P

((P(N(∆∗
m))

m′ −m

)m′−m
⩾ k

)
⩾ P

(
P(N(∆∗

m)) ⩾ k′),
where k′ := (m′ −m) k1/(m′−m). Writing the probability as the expectation of the
indicator, we apply the Palm distribution of the typical m-simplex to obtain

dm,m′(k) ⩾ 1
λm

∫
Rm+1

1{c(om) ∈ [0, 1]}P
(
P(N(om)) ⩾ k′)gm(om) dom.

45



Introduction

We proceed in the same manner as for the upper bound. Without loss of generality,
we assume that c(om) = o0 by the symmetry of the integrand, and use translation
invariance to shift the points by o0. Then, introducing o′

m := (o1−o0, . . . , om−o0) ∈ Rm
again, Fubini’s theorem yields

dm,m′(k) ⩾ 1
(m+ 1)λm

∫ 1

0

∫
Rm

P
(
P(N({0} ∪ o′

m)) ⩾ k′)gm({0} ∪ o′
m) do′

m do0.

Next, we restrict the integration domain with respect to o′
m to the set [0, β]m. Then, on

the one hand, gm({0}∪o′
m) = 1, and on the other hand, the neighborhood N({0}∪o′

m)
contains the interval [0, β], and thus |N({0} ∪ o′

m)| ⩾ β. Therefore,

dm,m′(k) ⩾
P

(
Xlow ⩾ k′)

(m+ 1)λm

∫ 1

0

∫
[0,β]m

do′
m do0 =

P
(
Xlow ⩾ k′)

(m+ 1)λm+1 ,

where Xlow is a Poisson random variable with parameter βλ, and we used that
λm = λm+1βm in the last step. We lower bound the probability that Xlow is greater
than or equal to k′ by the probability that it is equal to ⌊k′⌋:

dm,m′(k) ⩾
P

(
Xlow = ⌊k′⌋

)
(m+ 1)λm+1 = (βλ)⌊k′⌋e−βλ

(m+ 1)λm+1⌊k′⌋! .

Using Stirling’s approximation for the factorial and taking the logarithm yields

log
(
dm,m′(k)

)
⩾ −⌊k′⌋

(
log

(⌊k′⌋
βλ

)
− 1

)
+ log

( e−βλ

(m+ 1)λm+1

)
≍ −k′ log(k′).

Then, for large enough k, the lower bound follows from k′ ≍ k1/(m′−m).

CLT for the number of components

The following theorem characterizes the distribution of the number of components β0
in the Boolean model.

Theorem 5.4. Let Wn ⊆ R denote the window [−n/2, n/2] of size n. The number of
components βn,0 := β0(P∩Wn) in the Boolean model converges to a normal distribution:

n−1/2(
βn,0 − E[βn,0]

) d−−−→
n↑∞

N (0, σ2) with some σ2 ⩾ 0.

Proof. First, we introduce the add-one cost operator δ(P, o) := β0(P ∪{o})−β0(P) to
be the change in the number of components when we add a new point o to the Poisson
point process P. Note that the addition of the point o can result in at most 1 new
component if it is not connected to any other points, or it can merge at most P(N(o))
components to a single component. Thus, |δ(P, o)| ⩽ P(N(o)) + 1 = deg(o) + 1.
To show that the CLT holds, we follow the steps of the proof of Hiraoka et al. [48,
Theorem 5.2], and we apply the CLT by Penrose and Yukich [89, Theorem 3.1]. To do
so, we need to verify the following conditions.

• Moment bound: the supremum of the fourth moment of the add-one cost
operator δ(P, o) is finite: supn⩾1 E[δ(P ∩Wn, o)4] <∞.

• Weak stabilization: the add-one cost operator δ(P, o) converges to a finite
limit as n→∞: limn↑∞ δ(P ∩Wn, o) <∞.
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Moment bound. For the moment bound, using that |δ(P, o)| ⩽ deg(o) + 1, we have

E[δ(P ∩Wn, o)4] =
∫ ∞

0
P(δ(P ∩Wn, o) ⩾ s1/4) ds ⩽

∫ ∞

0
P

(
deg(o) + 1 ⩾ s1/4)

ds

⩽ 4
∫ ∞

−1
P(deg(o) ⩾ t)(t+ 1)3 dt,

where in the third step we used the substitution t := s1/4 − 1. As deg(o) is Poisson
distributed with parameter 2βλ, we have by Bennett’s inequality [8] that if t ⩾ 2βλ∨e2,

P
(
deg(o) ⩾ t

)
⩽ exp

(
−2βλt

(
log(t)− 1 + 1/t

))
⩽ e−2βλt,

since log(t)− 1 + 1/t ⩾ 1 whenever t ⩾ e2. Then, bounding the probability by 1 for
t < 2βλ ∨ e2,

E[δ(P ∩Wn, o)4] ⩽ 4
∫ 2βλ∨e2

−1
(t+ 1)3 dt+ 4

∫ ∞

2βλ∨e2
(t+ 1)3e−2βλt dt <∞,

where the first integral is finite since it is an integral of a polynomial over a finite
domain, and the second integral is finite since an exponential function dominates it.

Weak stabilization. For the weak stabilization, we have

lim
n↑∞

δ(P ∩Wn, o) = δ(P, o) < deg(o) + 1 <∞

almost surely, since the degree of a point is Poisson distributed.

CLT for the number of edges

In the following, we will show that a CLT also holds for the number of edges in the
Boolean model. We define the edge count Sn as the number of edges whose center
(leftmost point) is in [0, n]:

Sn =
∑

∆∈Σ1

1{c(∆) ∈ [0, n]}.

Theorem 5.5 (CLT for the edge counts). The centered and scaled edge count converges
to a normal distribution:

n−1/2(
Sn − E[Sn]

) d−−−→
n↑∞

N (0, σ2) with some σ2 > 0.

Proof. To show this result, Penrose and Yukich [89, Theorem 3.1] could be used for
the number of components as in the proof of Theorem 5.4, but this time, we use a
different approach, on which proofs in more general settings are based in the following
chapters. Setting ∆ := {P0, P1}, we assume without loss of generality that c(∆) = P0
is the leftmost point. Thus,

Sn =
∑

∆∈Σ1

1{P0 ∈ [0, n]}1
{
P1 ∈ N⩽(P0)

}
=

∑
P∈P∩[0,n]

deg⩽(P ),
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where
deg⩽(P ) := deg⩽(P,P) :=

∑
Pj∈P

1{Pj ∈ N⩽(P )}.

We divide the interval [0, n] into n intervals of length 1. Then, we write the edge
count Sn as the sum of the edge counts in each interval [i− 1, i]:

Sn =
n∑
i=1

Ti, Ti :=
∑

P∈P∩[i−1,i]
deg⩽(P ).

To show that the CLT holds, we would like to apply the CLT by Whitt [107,
Theorem 4.4.3], which states the following. If {Ti}i∈{1,...,n} is an associated sta-
tionary sequence of random variables with finite variance Var(Ti) < ∞, and if∑∞
i=1 Cov(T1, T1+i) < ∞, then the centered and scaled sum converges in distribu-

tion to a normal random variable:

n−1/2(
Sn − E[Sn]

) d−−−→
n↑∞

N (0, σ2) for some σ2 > 0.

The sequence {Ti}i∈{1,...,n} is stationary by the stationarity assumption of the
Poisson process, and thus E[Sn] = nE[T1].

Let us recall the definition of associated random variables from Definition 3.4.
If we add a new point to the Poisson point process, then the degrees of the points
in the Poisson point process cannot decrease. In other words, the degrees are an
increasing function of the Poisson point process. Thus, by the Harris-FKG theorem
[66, Theorem 20.4], the random variables {Ti}i∈{1,...,n} are associated.

Next, we show that the variance Var(Ti) is finite. Let Pi := P ∩ [i− 1, i]. Then,
writing Ti as the sum of degrees, we have

Var(Ti) = E
[ ∑
P∈Pi

deg⩽(P )2
]

+ E
[ ∑

(P1,P2)∈(Pi)2
̸=

Cov(deg⩽(P1), deg⩽(P2))
]

Next, we apply Mecke’s formula to the above terms. For the first term,

E
[ ∑
P∈Pi

deg⩽(P )2
]

= λ

∫ i

i−1
E[deg⩽(p)2] dp.

For the second term, we need to use the multivariate Mecke formula, and we add two
points p1, p2 ∈ R to the Poisson point process. As these two points can connect, we
need to decompose the degree deg⩽(p1) as below:

deg⩽(p1;Pi ∪ {p1, p2}) = deg⩽(p1;Pi ∪ {p1}) + 1{p2 ∈ N⩽(p1)},

and thus the product is

deg⩽(p1;Pi ∪ {p1, p2}) deg⩽(p2;Pi ∪ {p1, p2})
= deg⩽(p1;Pi ∪ {p1}) deg⩽(p2;Pi ∪ {p2}) + 1{p1 ∈ N⩽(p2)}1{p2 ∈ N⩽(p1)}

+ 1{p2 ∈ N⩽(p1)}deg⩽(p1;Pi ∪ {p1}) + 1{p1 ∈ N⩽(p2)}deg⩽(p2;Pi ∪ {p2})
= deg⩽(p1;Pi ∪ {p1}) deg⩽(p2;Pi ∪ {p2}) + 1{p1 = p2}

+ 21{p2 ∈ N⩽(p1)} deg⩽(p1;Pi ∪ {p1}),
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where the last equality follows from the symmetry of the last two terms of the expression
with respect to the points p1 and p2. The indicator 1{p1 = p2} is always 0 since
we consider only distinct pairs (P1, P2) ∈ (Pi)2

̸=. Then, the application of the Mecke
formula on the second term gives

E
[ ∑

(P1,P2)∈(Pi)2
̸=

Cov(deg⩽(P1), deg⩽(P2))
]

= λ2
∫ i

i−1

∫ i

i−1
Cov

(
deg⩽(p1), deg⩽(p2)

)
dp1 dp2

+ 2λ2
∫ i

i−1
E

[
deg⩽(p1)

] ∫ i

i−1
1

{
p2 ∈ N⩽(p1)

}
dp2 dp1,

and thus

Var(Ti) = λ

∫ i

i−1
E[deg⩽(p)2] dp+ λ2

∫ i

i−1

∫ i

i−1
Cov

(
deg⩽(p1),deg⩽(p2)

)
dp1 dp2

+ 2λ2
∫ i

i−1
E

[
deg⩽(p1)

] ∫ i

i−1
1

{
p2 ∈ N⩽(p1)

}
dp2 dp1.

As deg⩽(p) is Poisson distributed with parameter βλ, the first integrand is the second
moment of a Poisson random variable, and thus the first integral is

λ

∫ i

i−1
E[deg⩽(p)2] dp = βλ2(βλ+ 1).

For the second integrand, we have

Cov
(
deg⩽(p1),deg⩽(p2)

)
= E

[ ∑
P1∈P

∑
P2∈P

1
{
P1 ∈ N⩽(p1)

}
1

{
P2 ∈ N⩽(p2)

}]
− E

[ ∑
P∈P

1
{
P ∈ N⩽(p1)

}]
E

[ ∑
P∈P

1
{
P ∈ N⩽(p2)

}]
.

We decompose the first term based on two cases: when P1 = P2 and P1 ̸= P2. For
the case P1 ̸= P2, by the independence of the Poisson process, the expectation of the
product is the product of the expectations, which makes this summand cancel with
the second term, thus

Cov
(
deg⩽(p1),deg⩽(p2)

)
= E

[ ∑
P∈P

1
{
P ∈ N⩽(p1) ∩N⩽(p2)

}]
.

Applying the Mecke formula yields

Cov
(
deg⩽(p1),deg⩽(p2)

)
= λ

∫
R
1{p ∈ N⩽({p1, p2})} dp = λ

∣∣N⩽({p1, p2})
∣∣.

Note that the covariance is nonzero only if |p1− p2| ⩽ β, thus we bound the covariance
as

Cov
(
deg⩽(p1),deg⩽(p2)

)
= λβ 1{|p1 − p2| ⩽ β}.
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Then, the integral of the covariance is

λ3
∫ i

i−1

∫ i

i−1
Cov

(
deg⩽(p1),deg⩽(p2)

)
dp1 dp2 ⩽ λ3

∫ i

i−1

∫ p1+β

p1−β
β dp2 dp1 = 2β2λ3,

which is finite. We write the third term as follows:

2λ2
∫ i

i−1
E

[
deg⩽(p1)

] ∫ i

i−1
1

{
p2 ∈ N⩽(p1)

}
dp2 dp1 ⩽ 2λ2

∫ i

i−1

∣∣N⩽(p1)
∣∣ dp1 = 2βλ2.

Thus,
Var(Ti) ∈ O(1).

To apply the CLT for associated random variable, we show that the covariance
Cov(T1, T1+i) is summable.

∞∑
i=1

Cov(T1, T1+i) =
⌈1+β⌉∑
i=1

Cov(T1, T1+i) <∞,

where we used again that the common neighborhood N⩽({p1, p2}) of two points p1, p2
is empty if |p1 − p2| > β, and the sum is finite by similar arguments as above.

Poisson approximation for isolated points

Finally, we show a Poisson approximation result for the isolated points. So far, we
examined the distribution of the number of m-simplices in a growing window [0, n]
with constant intensity measure λ. Now, we consider the distribution of isolated points
in the unit interval [0, 1], with the Poisson process Pn having an increasing intensity
λn := λn. As we will see later, to keep the intensity of isolated points finite, we need
to scale the parameter βn := (2λn)−1 log(λn/β). In this model, the following theorem
holds.

Theorem 5.6 (Poisson approximation for isolated points). The distribution of isolated
points converges to a homogeneous Poisson point process with intensity λisolated = β as
n→∞.

Proof. This theorem can be proved using simpler methods than the one we will use
here, as cited in [86, Theorem 8.12]. However, to demonstrate the techniques that we
will use in Paper A, we apply a more complex approach here.

Our proof relies on the Poisson approximation theorem [16, Theorem 4.1], which
we introduce in our context. Let us define the measurable function S : P → F by

S(p) := [p− βn, p+ βn],

where F is the set of all closed subsets of R. Furthermore, let g : P ×Nloc → {0, 1} be
the measurable function indicating that a point p is isolated:

g(p,P) := 1
{
deg(p) = 0

}
.
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Note that g is localized to S, since its value depends only on points inside S. Next,
we define the point process ξ marking the isolated points of P as follows:

ξ[P] :=
∑
p∈P

g(p,P)δp.

Applying the multivariate Mecke formula to the above point process ξ, we have that
its intensity λisolated is given by

λisolated(A) = λn

∫
A
E

[
g(p,P)

]
dp = λn

∫
A
P

(
deg(p) = 0

)
dp = λn|A|P

(
deg(p) = 0

)
,

where A ⊆ [0, 1] is an arbitrary Borel set, we substituted the definition of g in the
second step, and calculated the integral using translation invariance and the stationarity
of the Poisson point process. Using the Poisson distribution property of the Poisson
process, we have P(deg(p) = 0) = e−2βnλn , and thus

λisolated(A) = λn|A|e−2βnλn = β|A| <∞,

where in the second step we used that βn = (2λn)−1 log(λn/β).
Let η be a Poisson point process with intensity measure λisolated, and let Sp :=

S(p) = [p− βn, p+ βn] be a measurable map from P to F , thus S(p) ⊆ Sp. Then, by
Bobrowski et al. [16, Theorem 4.1],

dKR(ξ, η) ⩽ E1 + E2 + E3,

where dKR is the Kantorovich–Rubinstein distance, and

E1 = 2λn
∫

[0,1]
g

(
p,P ∪ {p}

)
1

{
S(p) ̸⊂ Sp

}
dp

E2 = 2λ2
n

∫∫
[0,1]2

1
{
Sp1 ∩ Sp2 ̸= ∅

}
E

[
g

(
p1,P ∪ {p1}

)]
E

[
g

(
p2,P ∪ {p2}

)]
d(p1, p2)

E3 = 2λ2
n

∫∫
[0,1]2

1
{
Sp1 ∩ Sp2 ̸= ∅

}
E

[
g

(
p1,P ∪ {p1, p2}

)
g

(
p2,P ∪ {p1, p2}

)]
d(p1, p2).

Note that convergence in the Kantorovich–Rubinstein distance implies convergence in
distribution.

For the first term, E1 = 0, since the indicator in the integrand is always 0.
In the error term E2,

E
[
g

(
p1,P ∪ {p1}

)]
= E

[
g(p1,P)

]
= P

(
deg(p1) = 0

)
= e−2βnλn ,

and similarly for p2. Then, recognizing that 1
{
Sp1 ∩ Sp2 ̸= ∅

}
= 1

{
|p1 − p2| ⩽ 2βn

}
,

we can bound the error term as follows:

E2 = 2λ2
ne−4βnλn

∫∫
[0,1]2

1
{
|p1 − p2| ⩽ 2βn

}
d(p1, p2) ⩽ 8βnλ2

ne−4βnλn .

Taking the limit n→∞, we have

lim
n↑∞

E2 = lim
n↑∞

8βn
(
λne−2βnλn

)2 = 8 lim
n↑∞

βnβ
2 = 0.
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It remains to show that E3 → 0 as n→∞. Since

E
[
g

(
p1,P ∪ {p1, p2}

)
g

(
p2,P ∪ {p1, p2}

)]
= E

[
g

(
p1,P ∪ {p2}

)
g

(
p2,P ∪ {p1}

)]
,

the expectation is 0 whenever |p1 − p2| ⩽ βn. On the other hand, the indicator
1

{
Sp1 ∩ Sp2 ̸= ∅

}
requires that |p1 − p2| ⩽ 2βn. Thus,

E3 = 2λ2
n

∫∫
[0,1]2

1
{
|p1 − p2| ∈ [βn, 2βn]

}
P

(
deg(p1) = 0,deg(p2) = 0

)
d(p1, p2),

where we substituted the definition of g in the expectation. The event in the probability
happens whenever there are no points in the union of the two neighborhoods N(p1) ∪
N(p2), and thus

P
(
deg(p1) = 0, deg(p2) = 0

)
= P

(
P(N(p1) ∪N(p2)) = 0

)
= e−λn|N(p1)∪N(p2)|.

Note that |N(p1) ∪N(p2)| = 2βn + |p1 − p2| whenever |p1 − p2| ⩽ 2βn, and thus

E3 = 2λ2
ne−2βnλn

∫∫
[0,1]2

1
{
|p1 − p2| ∈ [βn, 2βn]

}
e−λn|p1−p2| d(p1, p2).

We bound the first integral using translation invariance. We set p1 = 0 and integrate
with respect to p1. Then, using that λne−2βnλn = β, we have

E3 ⩽ 2βλn
∫

[0,1]
1

{
|p2| ∈ [βn, 2βn]

}
e−λn|p2| dp2

⩽ 4βλn
∫ ∞

βn

e−λnp2 dp2 = 4βe−βnλn ,

where we bounded the indicator by 1
{
|p2| ∈ [βn, 2βn]

}
⩽ 1{|p2| ⩾ βn}, and we used

the symmetry of | · | in the second step. Finally, we take the limit n→∞:

lim
n↑∞

E3 = 4β lim
n↑∞

e−βnλn = 0

since limn↑∞ βnλn =∞.
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Poisson approximation of
fixed-degree nodes in weighted
random connection models
Christian Hirsch, Benedikt Jahnel, Sanjoy K. Jhawar, and Péter Juhász

Abstract: We present a process-level Poisson approximation result for the
degree-k vertices in a high-density weighted random connection model with a
preferential-attachment kernel in a finite-volume Borel set. Our main focus lies
on the impact of the left tails of the weight distribution, for which we establish
general criteria based on their small-weight quantiles. To illustrate that our
conditions are broadly applicable, we verify them for weight distributions with
polynomial and stretched exponential left tails. The proofs rest on truncation
arguments and a recently established quantitative Poisson approximation result
for functionals of Poisson point processes.
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nodes in weighted random connection models. Stochastic Process. Appl., 183:104593 2025.

The specific changes made to the paper, apart from minor typographical correc-
tions, are listed in Section Errata.





A.1. Introduction

A.1 Introduction
Spatial random networks are found in a wide variety of applications ranging from social
networks to material science to telecommunication systems [43, 59]. In particular, in
the context of such networks, it is essential to estimate the probability that we observe
extreme realizations of the key network characteristics, and to understand the reasons
leading to such extreme behavior. This need motivates the extension of the classical
findings from extreme value theory to the context of spatial random networks.

To make our results accessible to a larger audience, we first explain the classical
nonspatial models for preferential attachment, which go back to Barabási and Albert
[3]. Here, nodes arrive over time and connect to already existing nodes. The important
feature of the model is that it is more likely to connect to nodes that already have
many connections.

However, the classical preferential attachment model is not a spatial network. On
the other hand, one of the most fundamental spatial network models is the random
connection model (RCM) from [85]. It is defined on a vertex set in Euclidean space
where edges are put independently with some distance-dependent probability. We also
refer to Franceschetti et al. [38], Last et al. [68] for further properties. However, the
RCM does not have a heavy-tailed degree distribution. This motivated the introduction
of the weighted RCM (WRCM) [see 40, 42, 41, 64]. Here, the connection probability
not only depends on the distance but also on the weights.

A seminal paper in this context is [88], which studies the asymptotic behavior
of the number of degree-k nodes in the inhomogeneous RCM. More precisely, the
main result of [88] states that the number of degree-k nodes converges to a Poisson
distribution under a suitable scaling of the connectivity threshold in the connection
function.

While the extensions of Stein’s method developed in [88] are interesting from a
mathematical point of view, it is not always easily applicable in practice. The reason
is that the RCM can only produce light-tailed degree distributions [72, Equation (6.1)],
whereas many real-world networks exhibit heavy tails [3, 75]. To overcome this
limitation, Iyer and Jhawar [55] extended the results to the scale-free RCM introduced
in [29, 28]. These networks generate heavy-tailed degree distributions by assigning
suitable weights to the vertices, which significantly influence their ability to connect
to other vertices.

While the scale-free RCM involves many parameters, an important finding in [55]
is that most of them influence the connectivity threshold only through multiplication
by a constant. This points to a limitation of the scale-free RCM since, depending on
the application, we expect a wide variety of extreme-value scalings.

In this paper, we resolve this potential misconception by showing that scale-free
RCMs can indeed give rise to a wide range of extreme-value scalings. We stress that
these findings do not contradict the results in [55], since, in contrast to that work,
where the weights are bounded away from 0, we allow variations of the left tail of the
weight distribution, i.e., the behavior of the distribution near 0. While the majority of
the existing literature focuses exclusively on studying the effects of the right tail due
to its importance for the degree distribution, one of the core findings of our work is
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showing that the left tail of the weight distribution is crucial for understanding the
extreme-value behavior of degree-k nodes.

While this may be surprising at first sight, it is not entirely unexpected. Indeed,
our analysis shows that the most likely reason for observing a constant order of isolated
nodes is that these nodes have an extremely small weight, making it easier for them
to be isolated. On the other hand, it is the left tail that determines how difficult it
is for a node to have an extremely small weight. Hence, by allowing modification to
the left tail of the distribution of the weights, we can observe a variety of different
extreme-value behaviors.

Let us illustrate these findings through simulations set up with a constant order of
isolated nodes. In the left panel of Figure A.1, we consider a typical realization of an
isolated node (red) in a weighted RCM of intensity 1000, whose weight distribution has
a power-law left tail of tail index 2. The horizontal axis corresponds to the positions
of the nodes, whereas the vertical axis shows their weights. Edges are not shown.
Loosely speaking, most of the network resembles a typical realization of a Poisson
point process. However, the weight of the red node at the origin is atypically small,
making it easy to avoid connections. Our main result makes this intuition precise
by providing a quantitative prediction for how small the weight of the origin must
be to see a constant order of isolated nodes. In the right panel of Figure A.1, we
show a log-log plot of the weight of a typical isolated node against the point-process
intensity. The plot is approximately linear with a slope of −0.4682, which is close to
our theoretical prediction of −1/2.

The main contribution of our paper can be summarized as follows.

(1) While the results in [88, 55] tentatively indicate that the rare-event behavior of
the degree-k nodes is not strongly affected by the parameters, we show that, in
fact, a wide variety of extreme-value scalings can be obtained. This is achieved
by modifying the left tail of the weight distribution. As specific examples, we
consider the case where the left tail is of power-law or of Fréchet type.
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Figure A.1: Realization of an isolated node (red) in a weighted RCM with
intensity 1000 and weight distribution with power-law left tails of tail index 2 (left).
Log-log plot of the weight of a typical isolated point against varying point-process
intensities (right).
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(2) Our results go beyond the scale-free RCM and consider the weighted RCM
(WRCM) introduced by Gracar et al. [40, 42, 41], Komjáthy and Lodewijks [64].
WRCMs specify a kernel function and, therefore, allow one to consider models
of spatial preferential attachment.

(3) In contrast to [88, 55], we not only look at the number of degree-k nodes, but
also at their spatial distribution. In other words, we prove convergence of the
degree-k nodes to a Poisson point process. This is accomplished through the
application of a recently developed functional Poisson-approximation result from
Bobrowski et al. [16].

Our results focus on models where weights are assigned to vertices, which distinguishes
our work from the WRCMs explored in [64]. On the other hand, a connection arises
through the influence of the left tail of the weight distribution. Although the criteria
for explosion in [64, Equation (1.1)] is satisfied in both of our examples discussed in
Section A.3, it is not directly connected to the Assumptions A.1–A.3 introduced later
in our paper.

The rest of the manuscript is organized as follows. In Section A.2, we recall
the definition of the WRCM and state Theorem A.2.2 as our main result on the
Poisson approximation of the degree-k nodes. Loosely speaking, the precise rare-event
behavior is encoded in a characterizing equation that prominently involves the weight
distribution. Next, in Section A.3, we illustrate that the conditions on the weight
distribution are meaningful as they cover a wide range of natural models. Finally, in
Section A.4, we present the proofs of the above results.

A.2 The inhomogeneous random connection model and
main results

We now recall the precise definition of the kernel-based spatial random networks,
which are the objects of our study, as presented by Gracar et al. [41, 40]. We consider,
henceforth, a random graph with vertex set given by a homogeneous Poisson point
process Ps on Rd with intensity s > 0 and d ⩾ 1. Independently to each x ∈ Ps, we
associate a random weight Wx drawn from a distribution with cumulative distribution
function F : R+ → [0, 1], F (w) := FW (w) = P(W ⩽ w) on (0,∞). Edges between
pairs of points are drawn independently, and the probability that there is an edge
between any two vertices x, y ∈ Ps is a function of their distance and their weights Wx

and Wy, i.e.,
ps(x,Wx; y,Wy) := φ

(
|B|x−y|(o)|/(vsκ(Wx,Wy))

)
, (A.1)

where vs is the scaling factor depending on the intensity, |B|x−y|(o)| is the volume
of the centered Euclidean ball with radius |x − y|, and κ and φ are the kernel and
the profile function of the model that are specified as follows. Note that the scaling
factor vs has a specific value, which is discussed in (SCG) below. As kernel, we
consider the interpolation kernel, i.e.,

κ(w1, w2) := (w1 ∧ w2)(w1 ∨ w2)a
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for some a ⩾ 0, which is a special case of the kernel considered in [70, Equation (2.2)]
with parameters α = 1 and γ = a. Note that the interpolation kernel was also
introduced in the context of the WRCM in [104] under a different parametrization. In
particular, it interpolates between the cases a = 0 and a = 1, which are considered
under the names min kernel and product kernel earlier in the literature.

The profile function is a nonnegative function φ : [0,∞) → [0, 1] satisfying the
normalization condition

∫ ∞
0 φ(r) dr = 1, and regularly varying [13] at infinity with tail

index α > 1, that is,

lim
r↑∞

φ(tr)/φ(r) = t−α for all t > 0.

We assume that 1− F is also regularly varying at infinity with tail index β > aα, in
particular, µaα < ∞ with µr := E[W r]. The resulting random graph is denoted by
G(Ps, vs). We highlight that the parameter svs has a natural interpretation in terms
of the network model. Indeed, as we will see in Application A.4.4 in Section A.4, svs
is the order of the expected number of neighbors of a typical network node.

We are interested in the spatial distribution of nodes with a given degree, i.e.,

ξs,k :=
∑

x∈Ps∩H
1{deg(x) = k in G(Ps, vs)}δx, (A.2)

where H ⊆ Rd a Borel set with finite volume |H|. Note that deg(x) is the number
of all points connected to x, including those that lie outside H. In order to specify
the scaling vs, we first consider Ds,k := ξs,k(H), the number of degree-k vertices in
G(Ps, vs) that are contained in H. We identify the correct scaling vs,k such that
E[Ds,k] is constant. For this, let us introduce the decomposition

h(w) := wµ+(w) + waµ−(w) := wE
[
1{W ⩾ w}W a]

+ wa E
[
1{W < w}W

]
, (A.3)

of h(w) = E[κ(w, · )] and consider the scaling vs defined as the largest solution of the
equation

k! = sE[(svs,kh(W ))k exp(−svs,kh(W ))], (SCG)

for k ⩾ 0. We note that such a solution must exist at least for all sufficiently
large s. Indeed, take for example vs,k = c/s, then (SCG) can be rewritten as
s = k!/E[(ch(W ))k exp(−ch(W ))], where the right-hand side tends to infinity for
c→∞. We emphasize that the scaling vs,k depends on the chosen value of k. From
now on, we fix the degree k ⩾ 0, and write vs instead of vs,k going forward. We use
the same convention for Ds, Ds,k, and ξs, ξs,k as well. The following result establishes
the correct scaling, with its proof presented in Section A.4.

Lemma A.2.1 (Expected typical degree). Let us fix k ⩾ 0 and consider the ran-
dom graph G(Ps, vs) with the connection function ps of the form (A.1) and scaling
parameter vs as defined by (SCG). Then,

E[Ds] = |H|. (A.4)

While the definition of vs is indirect, in Section A.3, we illustrate that the order
of vs can be computed for given natural choices of the weight distribution as a function
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of the intensity s. The value of the parameter vs has important implications for the
network topology, as it reveals the order of the expected number of neighbors of a
typical node, svs. More precisely, we will see that, for polynomial tails, svs is of
polynomial order, while for stretched exponential tails, it is of polylogarithmic order.
This reflects the intuition that for polynomial tails, it is more likely that low-weight
nodes appear, which means that even for relatively large values of svs, it is reasonably
likely that a low-weight node is isolated. For stretched exponential tails, it is less
likely to create low-weight nodes, which means that even for smaller values of svs, it is
unlikely that a low-weight node is isolated. These observations are to be contrasted
with the finding from Iyer and Jhawar [55] that for a lower-bounded weight distribution,
svs is of a much smaller, namely, logarithmic order.

Having established the convergence of the expected degree counts in Lemma A.2.1,
in Theorem A.2.2 below, we prove the convergence of the degree distribution itself
in the sense of a Poisson point process approximation result. Note that this result is
only valid under certain assumptions on the distributions of the weights W , which
we now collect. These assumptions are rather technical but are a key component of
the approximation arguments in our proof. In Section A.3, we illustrate how to verify
these assumptions and present examples for weight distributions exhibiting a variety
of left tails.

A central role in our proof is played by the 1/(2s)-quantile of the weight distribution,
which we denote by ws. That is, F (ws) = 1/(2s). The importance of this quantity
stems from the intuition that it is a first indication for the typical weight of an isolated
node in H. Indeed, nodes of weights much smaller than ws are unlikely to appear in H,
whereas nodes of weights much larger than ws are unlikely to be isolated. We stress
that the precise interpretation of much smaller and much larger may depend on the
tail distribution. This is one of the main reasons why the following assumptions are
rather technical. Let δ := (α− 1)/2. Our assumptions require that, for some K > 0
and η ∈ (0, 1),

A.1 lims↑∞ svsw
η
s/ log(s) =∞,

A.2 lims↑∞ log(s)w−(K+1)(1−η)
s F (wηs ) = 0, and

A.3 lims↑∞ log(s)w(Kδ−1)(1−η)
s = 0.

To present our main result, let ζ denote a Poisson point process with intensity
Leb(dx) := 1{x ∈ H} dx and let

dKR(ξ, ξ′) := sup
g∈LIP

{|E[g(ξ)]− E[g(ξ′)]|}

denote the Kantorovich–Rubinstein distance between the distributions of the two
processes ξ and ξ′. Here LIP is the class of measurable 1-Lipschitz functions with
respect to the total variation distance on the space of finite point configurations in H.
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Theorem A.2.2 (Poisson approximation). Let us fix k ⩾ 0, and consider the random
graph G(Ps, vs) with the connection function ps of the form (A.1) and the scaling
parameter vs as defined by (SCG). Then, under Assumptions A.1–A.3,

lim
s↑∞

dKR(ξs, ζ) = 0

for any Borel set H ⊂ Rd of finite volume.

Note that convergence in Kantorovich–Rubinstein distance implies convergence in
distribution in the sense of random measures supported on a finite volume H. In fact,
by [61, Theorem 4.11], this implies that the random measure ξs defined on the entire Rd
converges vaguely in distribution to a homogeneous Poisson point process. However,
we stress that for these infinite-volume objects, we do not obtain the convergence in
Kantorovich–Rubinstein distance.

We note also that Theorem A.2.2 is the analog of [55, Theorem 3.2] for the case
where the weight distribution has positive mass arbitrarily close to 0. More precisely,
we note that in [55], the connection probability is given by

1− exp
(
−ηr

α
sWxWy

|x− y|α
)

for some parameters η, rs, α. Hence, this can be written as φ(|B|x−y|(o)|/(vs
κ(W ′

x,W
′
y))), where vs := rds , W ′

x := W
d/α
x , the parameter a = 1 in the kernel κ

and
φ(r) := 1− exp

(
−η|B1(o)|α/dr−α/d

)
.

Since in [55], there exists ε > 0 such that ws > ε for all intensity s, the Assumptions A.2
and A.3 are violated. This means that the results for the model discussed by Iyer and
Jhawar [55] are not implied by Theorem A.2.2.

We also note that in [88], a straightforward extension of the arguments for the
degree-k vertices also yields the Poisson approximation for size-k components. However,
in our setting, the introduction of weights makes the analysis of size-k components
substantially more involved. Indeed, such an analysis would rely on a highly delicate
configurational analysis of the weights in such components. These weights need to
be small enough to ensure that there are no connections to outside nodes, while
simultaneously being large enough to ensure connectivity between the nodes within
the component. While such an analysis is not entirely out of range, it would require
additional constraints on the weight distribution as well as a substantially more refined
analysis. Hence, to provide a focused presentation of the main ideas, we refrain from
conducting such an analysis here.

Moreover, as mentioned in the introduction, the main tool of the proof is a
recently developed functional Poisson-approximation result from Bobrowski et al. [16,
Theorem 4.1]. Here, we note that Bobrowski et al. [16] also gives a functional Poisson-
approximation result for the nearest-neighbor radii. However, this result heavily relies
on the specific form of the isolation probability for the standard random geometric
graph on a Poisson point process. In particular, such a result does not extend easily
to the present setting, where the isolation probability depends in a complicated way
on both the weights and the profile function.
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Finally, we note that, while Bobrowski et al. [16, Theorem 4.1] provides a rate of
convergence, we refrain from stating such rates here. This is because the complexity of
our model forces us to make approximations at several instances that are presumably
suboptimal. Hence, while it would be possible to extract specific convergence rates
from our proof, they would be far from optimal as well. Since a streamlined proof
without tracking the rates is substantially more accessible, we decided to present the
proof in this form.

A.3 Examples
The goal of this section is to provide examples for the weight distributions and show
that they fulfill the Assumptions A.1–A.3 listed in Section A.2. In Sections A.3 and A.3,
we discuss examples for weight distributions with polynomial and stretched exponential
left tails, respectively.

Let us start by stating some a priori estimates of our parameters; recall the
definitions in (A.3).

Lemma A.3.1. It holds that

(1) µ−(w) ⩽ wF (w),

(2) wa(1− F (w)) ⩽ µ+(w) ⩽ µa,

(3) limw↓0 µ+(w) = µa,

(4) limw↓0 h(w)/w = µa, and

(5) svsws ∈ O(log(s)).

Proof. The first three statements are immediate. For the fourth statement, as w → 0,
we can bound the fraction of the two terms of h(w) as

lim
w↓0

waµ−(w)
wµ+(w) ⩽ lim

w↓0
wa

F (w)
µa

= 0.

For the fifth statement we use the indicators for the events W ⩽ ws and W > ws to
bound

1 = sE
[

1
k!(svsh(W ))k exp(−svsh(W ))

]
⩽ sP(W ⩽ ws) + sE

[
1
k!(svsh(W ))k exp(−svsh(W ))1{W > ws}

]
.

As ws is the 1/(2s)-quantile, the first term is 1/2, and as supx⩾0{xk exp(−x/2)} <∞,
we can upper bound the second term as

1/2 ⩽ csE
[
exp(−svsh(W )/2)1{W > ws}

]
⩽ c′sE

[
exp(−svsh(W )/2)1{ws < W < c′′}

]
for some constants c, c′, c′′ > 0 with µ(c′′) > 0. In the last step, we used that h(W )
is a monotone increasing function. Finally, using the definition of h(W ), we have
that 1/2 ⩽ c′s exp(−svswsµ+(c′′)/2) and therefore svswsµ+(c′′) ⩽ 2 log(2c′s), as
asserted.
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The starting point of the computations in this section is (SCG). We use that
lims↑∞ svs =∞. This is so because the expectation in (SCG) must be 0 in the limit
so that the left-hand side of (SCG) is constant.

Polynomial left tails

First, we consider the setting with polynomial left tails. That is, we assume that there
exist parameters p, ρ, b > 0 such that

F (w) = pwρ for all w ⩽ b.

Note that, for sufficiently large values of s, the 1/(2s)-quantile ws of the weight
distribution is given by

P(W ⩽ ws) = 1/(2s) ⇐⇒ pwρs = 1/(2s) ⇐⇒ ws = (2ps)−1/ρ.

Let us first establish the scaling vs.

Lemma A.3.2 (Scaling for polynomial left tails). Let k ⩾ 0 and let vs be as defined
in (SCG). Then

lim
s↑∞

sρ−1vρs = pρ

k!µρa
Γ(k + ρ).

Proof. Let 0 < ε < b. Then, using (SCG), we have that

lim
s↑∞

sρ−1vρs = lim
s↑∞

(svs)ρ

k! E
[(
svsh(W )

)k exp
(
−svsh(W )

)]
= lim

s↑∞
(svs)ρ

k!
(
E

[(
svsh(W )

)k exp
(
−svsh(W )

)
1

{
W ⩽ ε

}]
+ E

[(
svsh(W )

)k exp
(
−svsh(W )

)
1{W > ε}

])
,

where the second term decays exponentially fast in svs since h(W ) > 0 whenever
W > ε. Thus, we keep only the case when W ⩽ ε, which leads to

lim
s↑∞

sρ−1vρs = lim
s↑∞

(svs)ρ

k! E
[(
svsh(W )

)k exp
(
−svsh(W )

)
1

{
W ⩽ ε

}]
.

Note that, for w ⩽ b, the weight distribution has the density pρwρ−1. Since ε→ 0, we
can use that limw↓0 h(w)/w = µa. We use Lemma A.3.1 to see that

lim
s↑∞

sρ−1vρs = lim
ε↓0

lim
s↑∞

(svs)ρ+kpρµka
k!

∫ ε

0
(1 + oε(1))wk+ρ−1 exp

(
−svsµaw(1 + oε(1))

)
dw.

Finally, substituting u := svsµaw we have that

lim
s↑∞

sρ−1vρs = lim
ε↓0

lim
s↑∞

pρ

k!µρa

∫ svsεµa

0
(1 + oε(1))uk+ρ−1 exp

(
−u(1 + oε(1))

)
du

= pρ

k!µρa
Γ(k + ρ),

as asserted.
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After having shown Lemma A.3.2, we verify Assumptions A.1–A.3. First, we deal
with Assumption A.1. As ws = (2ps)−1/ρ, we have that for η ∈ (0, 1),

lim inf
s↑∞

svs(2ps)−η/ρ

log(s) = lim inf
s↑∞

(2ps)−η/ρ

log(s)
( spρ
k!µρa

Γ(k + ρ)
)1/ρ

= lim inf
s↑∞

(p1−ηρΓ(k + ρ)
2ηk!µρa

)1/ρ s(1−η)/ρ

log(s) =∞,

where in the first step we used Lemma A.3.2.
Now, we choose K := 2/δ and subsequently η sufficiently close to 1 such that

(K + 1)(1− η)/ρ < η, or, equivalently,

(1 +K)/ρ
1 + (1 +K)/ρ < η < 1.

We now turn our attention to Assumption A.2. Note that F (wηs ) = pwηρs = p/(2ps)η.
Therefore,

lim sup
s↑∞

log(s)w−(K+1)(1−η)
s F (wηs ) = lim sup

s↑∞
log(s)(2ps)(K+1)(1−η)/ρ p

(2ps)η

= p lim sup
s↑∞

log(s)(2ps)(K+1)(1−η)/ρ−η = 0,

where we used that the exponent is negative for the chosen η. Thus, Assumption A.2
is satisfied.

Finally, for Assumption A.3 we have that

lim sup
s↑∞

log(s)w(Kδ−1)(1−η)
s = lim sup

s↑∞
log(s)(2sp)−(Kδ−1)(1−η)/ρ = 0,

as the exponent is negative by the choice of K.

Stretched exponential left tails

Now, we consider stretched-exponential left tails. That is, we assume that there exist
parameters p, ρ, b > 0 such that

F (w) = p exp(−w−ρ) for all w ⩽ b.

Note that, for large values of s, the 1/(2s)-quantile ws of the weight distribution is
given by

P(W ⩽ ws) = 1/(2s) ⇐⇒ p exp(−w−ρ
s ) = 1/(2s) ⇐⇒ ws = log(2ps)−1/ρ.

Next, we identify the vs-scaling.

Lemma A.3.3 (Scaling for stretched exponential left tails). Let vs be as defined
in (SCG). Then, for k ⩾ 0,

0 < lim inf
s↑∞

svs
log(s)1+1/ρ ⩽ lim sup

s↑∞

svs
log(s)1+1/ρ <∞.
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Since the proof of Lemma A.3.3 is rather technical, we first explain how to verify
Assumptions A.1–A.3. For this, let η = 1/2 and fix K > (2ρ+ 1)/δ. First, we examine
Assumption A.1. As ws = log(2ps)−1/ρ, using Lemma A.3.3, for some M > 0,

lim inf
s↑∞

svsw
η
s

log(s) = lim inf
s↑∞

svs log(2ps)−η/ρ

log(s) ⩾ lim
s↑∞

1
M

log(s)−η/ρ−1 log(s)1+1/ρ =∞,

where we applied that lims↑∞ log(s)/ log(2ps) = 1. Let us consider Assumption A.2.
As

F (wηs ) = p exp(−w−ρη
s ) = p exp

(
− log(2ps)1/2)

,

we have that

lim sup
s↑∞

log(s)w−(K+1)(1−η)
s F (wηs ) = lim

s↑∞
log(s) log(2ps)(K+1)/(2ρ)p exp

(
− log(2ps)1/2)

= p lim
s↑∞

log(s)1+(K+1)/(2ρ) exp(− log(s)1/2).

Noting that log(log(s)1+(K+1)/2ρ) ∈ o(log(s)1/2), independently of the value of K, we
conclude that

lim sup
s↑∞

log(s)w−(K+1)(1−η)
s F (wηs ) = p lim sup

s↑∞
exp

(
− log(s)1/2)

= 0.

Thus, the Assumption A.2 holds. Similarly, we can see that Assumption A.3 is satisfied
since for our choice of K,

lim sup
s↑∞

log(s)w(Kδ−1)(1−η)
s = lim

s↑∞
log(s) log(2ps)−(Kδ−1)/(2ρ) = 0.

Now, we prove Lemma A.3.3. In the proof, we use the Landau notation f ≍ g for
f ∈ O(g) and g ∈ O(f).

Proof of Lemma A.3.3. To prove the statement for general k ⩾ 0, we show lower
and upper bounds for σs := svs, defined via (SCG). Let us introduce the following
notations:

σ−
s := M−1 log(s)1+1/ρ and σ+

s := M log(s)1+1/ρ,

for a suitable M > 0 chosen below.
Our goal is to show that for some M > 0 and all sufficiently large s, the largest

solution σs of (SCG) lies in σ−
s < σs < σ+

s . For a fixed intensity s, Figure A.2 shows
the right-hand side

L(s, σ) := sE
[
(σh(W ))k exp(−σh(W ))

]
of (SCG) as a function of σ compared to its left-hand side k!.
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0 σ−
s

σs σ+
s

k!

Step 1 Step 2

Goal

σ

L(s, σ)

Figure A.2: The right-hand side L(s, σ) of (SCG) as a function of σ in three
intervals. In the first step of the proof, we show that L(s, σ−

s ) > k! for large s.
The second step proves that if s is large and σ ⩾ σ+

s , then L(s, σ) < k!. Finally,
we use the intermediate-value theorem to show that the largest solution of (SCG)
must lie in the third interval.

To prove Lemma A.3.3, we follow two steps.

(1) First, we show that lims↑∞ L(s, σ−
s ) =∞.

(2) Next, we will see that lims↑∞ supσ⩾σ+
s
L(s, σ) = 0.

These two steps conclude the proof. Indeed, we note that lims↑∞ L(s, σ−
s ) > k! (Step 1),

while also lims↑∞ supσ⩾σ+
s
L(s, σ) < k! (Step 2). As L(s, σ) is a continuous function

of σ, the intermediate-value theorem leads to the conclusion that for large s, there is
at least one solution of (SCG) if σ ∈ (σ−

s , σ
+
s ). It also follows from Step 2 that we

cannot have a solution if σ ⩾ σ+. Thus, the largest solution σs must exist and lie in
σ−
s < σs < σ+

s , thus proving the lemma.

Step 1. Let us first assume that σ = σ−
s . Then, for every K > 0,

L(s, σ−
s ) = sE

[(
σ−
s h(W )

)ke−σ−
s h(W )] ⩾ sE

[
1

{
σ−
s h(W ) ⩾ 1,W ⩽ Kws

}
e−σ−

s h(W )].
We choose K and M large enough such that K−ρ + 2M−1Kµa < 1. Since ws → 0 as
s→∞, independently of the chosen K in the indicator function, we use again that
limw↓0 h(w)/w = µa from of Lemma A.3.1 (3) to see that

lim
s↑∞

L(s, σ−
s ) ⩾ lim

s↑∞
sE

[
exp

(
−2σ−

s Wµa
)
1

{
2/(σ−

s µa) ⩽W ⩽ Kws
}]

⩾ lim
s↑∞

s exp
(
−2σ−

s Kwsµa
)
P

(
2/(σ−

s µa) ⩽W ⩽ Kws
)
.

We can simplify the above exponential by using the specific form of σ−
s and ws, which

leads to

exp
(
−2σ−

s Kwsµa
)

= exp
(
−2Kµa log(s)1+1/ρ log(2ps)−1/ρ/M

)
≍ s−2M−1Kµa ,
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where we also used that lims↑∞ log(s)/ log(2ps) = 1. We can determine the probability
for large s as

P
(
(σ−
s µa)−1 ⩽W ⩽ Kws

)
⩾ P(W ⩽ Kws)− P(W ⩽ Kws/2)

≍ p(2ps)−K−ρ − p(2ps)−(K/2)−ρ ≍ s−K−ρ
.

Thus, using these results, we deduce that

lim
s↑∞

L(s, σ−
s ) ⩾ lim

s↑∞
s1−K−ρ−2M−1Kµa =∞,

since our choice of K ensures K−ρ + 2M−1Kµa < 1.

Step 2. Here, we have that

lim sup
s↑∞

sup
σ⩾σ+

s

L(s, σ) = lim sup
s↑∞

sup
σ⩾σ+

s

sE
[(
σh(W )

)k exp
(
−σh(W )

)]
⩽ lim sup

s↑∞
sup
σ⩾σ+

s

sE
[
C exp

(
−σh(W )/2

)]
⩽ C lim sup

s↑∞
sE

[
exp

(
−σ+

s h(W )/2
)]
,

where C := (2k)k exp(−k). For the right tail of the weight distribution when W > b,
we estimate

E
[
exp(−σ+

s h(W )/2)1{W > b}
]
⩽ exp

(
−σ+

s h(b)/2
)

= s−M log(s)1/ρh(b)/2 ∈ o(s−2),

where we used the monotonicity of h(W ) in the first step. Fixing K > 0 with K−ρ ⩾ 2,
we calculate the upper bound for the case when W < Kws via

E
[
exp(−σ+

s h(W )/2)1{W < Kws}
]
⩽ P(W < Kws),

where the choice of K, as we will see below, implies that the second term is negligible
compared to the case when W ∈ [Kws, b]. Finally, for W ∈ [Kws, b], we have
h(w) ⩾ wµ+(b), and therefore, since ws = log(2ps)−1/ρ, choosing M > 4/(Kµ+(b))
gives that

E
[
exp(−σ+

s h(W )/2)1{Kws ⩽W ⩽ b}
]
⩽ exp(−σ+

s Kwsµ+(b)/2) ∈ o(s−2).

We obtain that lims↑∞ sE[exp(−σ+
s h(W )/2)] = 0, as asserted.

A.4 Proofs
To apply the result Bobrowski et al. [16, Theorem 4.1], it is convenient to express the
examined scale-free network via i.i.d. marked Poisson point processes. More precisely,
we define

ξ[ω; v] :=
∑
x∈ω

gk(x, ω; v)δx (A.5)

for locally finite ω in the suitable space Ω = Rd × [0,∞)× [0, 1]Z⩾0 . Here gk(x, ω; v)
denotes the indicator that x ∈ H and has degree k in the graph G(ω; v). We consider
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ξs = ξ[P̃s; vs] where P̃s is a Poisson point process on Ω with intensity measure
Ks(dx) := s dx⊗PW⊗Leb⊗Z⩾0

[0,1] . Based on the marks, we draw an edge between any two
points x = (x,Wx, Tx) and y = (y,Wy, Ty) with Wx < Wy if T (i)

y < ps(x,Wx, y,Wy),
where i ⩾ 0 is chosen such that x is the ith closest point to y within P̃s. In words,
similarly to [88], we encode the randomness associated with the existence of an edge
(conditioned on the positions x, y and weights Wx,Wy of the endpoints) into an
additional i.i.d. marking of the points, where the vertex with the larger mark makes
the decision. The measure Leb⊗Z⩾0

[0,1] then guarantees that any edge in the complete
graph has an independent choice, using the fact that with probability one no two
points have the same distance.

Now, we can break down the proof of our main theorem into two key steps: an
approximation step and then the Poisson-convergence proof for the approximating
process. As mentioned above, to employ [16, Theorem 4.1], we need to control certain
bounding terms. However, due to the long-range correlations in the spatial random
network, it is difficult to directly apply this result. Moreover, they are also not
easily expressible in the usual framework of stopping sets from Bobrowski et al. [16].
Therefore, we work with suitable truncations in the weight space and the spatial
domain. Thus, we consider the truncated point count

ĝck(x, ω; v) := gk(x, ω ∩ Ω⩾Wx ; v)1{Wx < c},

where Ω⩾Wx = Rd × [Wx,∞)× [0, 1]Z⩾0 . To spatially localize the edge count, let us
introduce

ḡV,ck (x, ω; v) = ĝck(x, ω ∩ ΩV (x); v),

where ΩV (x) = B(V/νd)1/d(x) × [0,∞) × [0, 1]Z. Here νd = |B1(o)| and hence, the
ball B(V/νd)1/d(x) with radius V/νd centered at x has volume V . We write ΩV

⩾a(x) =
ΩV (x) ∩ Ω⩾a and consider the random variable

ξ̄Vo,w
s := ξ̄Vo,w

s [P̃s; vs] :=
∑

x∈P̃s

ḡvsWxVo,w
k (x, P̃s; vs)δx,

where, we fix the cut-off Vo(s) := w−K(1−η)
s for η ∈ (0, 1) and K > 0 satisfying the

Assumptions A.1–A.3. The proof of Theorem A.2.2 is a direct consequence of the
following two statements.

Proposition A.4.1 (Truncations are negligible). Under Assumptions A.1–A.3, we
have that

lim
s↑∞

dKR(ξs, ξ̄Vo(s),wη
s

s ) = 0.

Proposition A.4.2 (Poisson approximation). Under Assumptions A.1–A.3, we have
that

lim
s↑∞

dKR(ξ̄Vo(s),wη
s

s , ζ) = 0.

Before presenting the proofs of Propositions A.4.1 and A.4.2 in Sections A.4 and A.4,
respectively, let us collect some supporting results that will be used multiple times
later.
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Supporting results

A key property of the considered model is that the expected typical degree conditioned
on the typical weight Wo can be expressed in closed form. This is the content
of the following auxiliary result from Deprez and Wüthrich [29, Lemma 4.1]. To
make our presentation self-contained, we reproduce the short proof here. Let us
introduce the notation o := (o,Wo, To) for the marked typical vertex. Furthermore, let
f : [0,∞)3 → [0,∞) be a measurable function. We define an f -weighted degree of a
marked vertex x as

degf (x) :=
∑

y∈P̃s : y↔x

f(|B|x−y|(o)|,Wx,Wy).

In particular, by choosing f as a suitable indicator, we can filter only those neighbors
of x satisfying a desired property. To ease notation, we set

f∗(wo, w) :=
∫ ∞

0
f(uvsκ(wo, w), wo, w)φ(u) du, wo, w > 0.

Lemma A.4.3 (Expected typical degree). It holds that

E[degf (o) |Wo] = svsWo E
[
1{W ⩾Wo}W af∗(Wo,W )

∣∣Wo
]

+ svsW
a
o E

[
1{W ⩽Wo}Wf∗(Wo,W )

∣∣Wo
]
.

Before proving Lemma A.4.3, we discuss how to simplify it for specific choices of f .
Recall that

h(Wo) = Woµ+(Wo) +W a
o µ−(Wo)

= Wo E
[
1{W ⩾Wo}W a

∣∣Wo
]

+W a
o E

[
1{W < Wo}W

∣∣Wo
]
.

Application A.4.4 (Degree of a typical vertex). For f ≡ 1, we have that f∗(wo, w) = 1
and hence,

E[degf (o) |Wo] = svsWo E
[
1{W ⩾Wo}W a

∣∣Wo
]

+ svsW
a
o E

[
1{W ⩽Wo}W

∣∣Wo
]

= svs E[κ(Wo,W ) |Wo] = svsWoµ+(Wo) + svsW
a
o µ−(Wo).

Application A.4.5 (Outdegree of a typical vertex). Since f∗(wo, w) = 1{w ⩾ wo}
for f(u,wo, w) = 1{w ⩾ wo}, we have that

E[degf (o) |Wo] = svsh(Wo) = svsWoµ+(Wo).

Application A.4.6 (Finite-range truncation). For f(u,wo, w) = 1{u ⩾ Vovswo, w ⩾
wo}, we have that f∗(wo, w) = 1{w ⩾ wo}

∫ ∞
Vo/Wa φ(u) du, and hence,

E[degf (o) |Wo] = svsWo E
[
1{W ⩾Wo}W a

∫ ∞

Vo/Wa
φ(u) du

∣∣∣Wo

]
⩽ svsWo E

[
W a

∫ ∞

Vo/Wa
φ(u) du

]
.

We further bound the expression in Application A.4.6 using the fact that φ and 1− F
are assumed to be regularly varying with suitable indices.
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Lemma A.4.7. As s→∞, we have that

E
[
W a

∫ ∞

Vo/Wa
φ(u) du

]
∈ O(V (1−α)/2

o ).

Proof. We first consider the simple case where a = 0. Then, Karamata’s theorem
[94, Theorem 0.6 (a)] implies that for large Vo we have that E[degf (o) | Wo] ⩽
c1svsWoVoφ(Vo), for some constant c1 > 0. Again, by the regular variation of φ, for
all sufficiently large Vo, we have that φ(Vo) ⩽ c2V

−α+(α−1)/2
o .

For a > 0, we distinguish between the cases, where Vo ⩽ MW a and where Vo >
MW a, for some large M > 0. This allows us to bound the integral with respect to the
function φ, and we obtain that

E
[
W a

∫ ∞

Vo/Wa
φ(u) du

]
⩽ µ+

((
Vo
M

)1/a)
+ c3Vo E

[
1

{(
Vo
M

)1/a
⩾W

}
φ

(
Vo
Wa

)]
,

for some constant c3 > 0. Let ε := (α− 1)/2. Then, the regular variation of φ implies
that for a suitable c4 > 0 we have∫ (Vo/M)1/a

0
φ

(
Vo
wa

)
F (dw) ⩽ c4V

−α+ε
o

∫ (Vo/M)1/a

0
wa(α−ε)F (dw)

⩽ c4µa(α−ε)V
−α+(α−1)/2
o ,

where we also used that regularly varying functions can be bounded by polynomials
with a slightly weaker exponent [see 94, Proposition 0.8]. On the other hand, we can
express the first term using the ath moment of W 1{W ⩾ (V0/M)1/a} as

µ+
((

Vo
M

)1/a)
=

∫ ∞

(Vo/M)1/a
waF (dw) = a

∫ ∞

0
ra−1 P

(
W ⩾ max

{
r,

(
V0
M

)1/a})
dr.

Handling the cases r ⩽ (V0/M)1/a and r > (V0/M)1/a separately,

µ+
((

Vo
M

)1/a)
= Vo

M

(
1− F

((
Vo
M

)1/a))
+ a

∫ ∞

(Vo/M)1/a
ra−1(1− F (r)) dr.

Since 1− F is a regularly varying function with tail index β, we can bound 1− F (r)
by c5r

−β+a(α−1)/2 for all suitably large r, where c5, c6 > 0 are constants:

µ+
((

Vo
M

)1/a)
⩽ c5

(
Vo
M

)1−β/a+(α−1)/2
+ c5a

∫ ∞

(Vo/M)1/a
ra−1−β+a(α−1)/2 dr

= c6V
1−(β−a(α−1)/2)/a
o ,

where we used again [94, Theorem 0.6 and Proposition 0.8]. Now, since β > aα we see
that 1− (β − a(α− 1)/2)/a < (1− α)/2, which finishes the proof.

After having discussed these specific applications, we now turn to the proof of
Lemma A.4.3.
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Proof of Lemma A.4.3. First, by Campbell’s formula [66, Proposition 2.7],

E[degf (o) |Wo] = s

∫
Rd

E
[
f(|B|x|(o)|,Wo,Wx)ps(o,Wo;x,Wx)

∣∣Wo
]
dx.

Now, switching to spherical coordinates, substituting u := v/(vsκ(Wo,W )), and
applying Fubini’s theorem yields

E[degf (o) |Wo] = s

∫ ∞

0
E

[
f(v,Wo,W )φ(v/(vsκ(Wo,W )))

∣∣Wo
]
dv

= svs

∫ ∞

0
E

[
κ(Wo,W )f(uvsκ(Wo,W ),Wo,W )φ(u)

∣∣Wo
]
du

= svsWo E
[
1{W ⩾Wo}W a

∫ ∞

0
f(uvsWoW

a,Wo,W )φ(u) du
∣∣∣Wo

]
+ svsW

a
o E

[
1{W ⩽Wo}W

∫ ∞

0
f(uvsW a

oW,Wo,W )φ(u) du
∣∣∣Wo

]
,

as asserted.

As an immediate application of the above discussion, we can prove Lemma A.2.1.

Proof of Lemma A.2.1. By the Mecke formula and reparametrization, we have

E[Ds] = E
[ ∑

x∈P̃s∩H

1{deg(x) = k in G(P̃s, vs)}
]

= sP
(
deg(o) = k in G(P̃s, vs)

)
|H|

= sE
[

1
k!(svsh(Wo))k exp(−svsh(Wo))

]
|H| = |H|,

where we also used that, given a fixed value of Wo, deg(o) is a Poisson random variable
with parameter

E[deg(o) |Wo] = s

∫
Rd

E
[
ps(o,Wo;x,Wx)

∣∣Wo
]
dx = svsh(Wo).

This finishes the proof.

Proof of Proposition A.4.1

Proof of Proposition A.4.1 Part 1: Mark approximation. We perform the proof in
three steps.

Step 1. Before performing the main mark approximation, we neglect the largest
marks. For this, let

ξcs =
∑

x∈P̃s

gck(x, P̃s; vs)δx,

where gck(x, P̃s; vs) := gk(x, P̃s; vs)1{Wx < c} and c is such that µ−(c) > 0. Then,
using that ξs and ξcs are defined on the same probability space, Markov’s inequality
and the Mecke theorem,

dKR(ξs, ξcs) ⩽ E[dTV(ξs, ξcs)] = E[(ξs − ξcs)(H)] ⩽ sE
[
ψc(s)

]
,
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where ψc(s) := 1{Wo ⩾ c,deg(o) = k in G(P̃s, vs)}. Then, sE[ψc(s)] = E[f cs (Wo)
1{Wo ⩾ c}], with

f cs (Wo) := s
k!

(
svsh(Wo)

)k exp(−svsh(Wo)) ⩽ Cks exp(−svsh(Wo)/2),

where we used that sup{xk exp(−x/2) : x ⩾ 0} <∞. Now we can further bound,

s exp(−svsh(Wo)/2)1{Wo ⩾ c} ⩽ s exp(−svscaµ−(c)/2) = s exp
(
−svswηscs/2

)
,

with cs = caµ−(c)/wηs . Note that lims↑∞ cs ⩾ 2 since ws → 0 and, invoking Assump-
tion A.1, svswηs ⩾ 2 log(s) for all sufficiently large s. Hence,

lim
s↑∞

s exp(−svscaµ−(c)/2) ⩽ lim
s↑∞

s exp(−2 log(s)) = 0.

Step 2. Following the same initial arguments as in Step 1, we now remove marks
Wo ⩾ wηs . More precisely, we then have that dKR(ξcs, ξw

η
s

s ) ⩽ E[fs(Wo)1{wηs ⩽ Wo <
c}], where

fs(Wo) := s
k!

(
svsh(Wo)

)k exp(−svsh(Wo)) ⩽ Cks exp(−svsh(Wo)/2).

Now, we bound slightly differently. For large values of s,

s exp(−svsh(Wo)/2)1{wηs ⩽Wo < c} ⩽ s exp(−svswηsµ+(c)).

Again, using Assumption A.1, the right-hand side tends to 0 as s→∞.

Step 3. We now come to the main mark-approximation step. We may bound, as
above,

dKR(ξw
η
s

s , ξ̂w
η
s

s ) ⩽ sE
[
ψ(s)

]
,

where ξ̂w
η
s

s =
∑
x∈P̃s

ĝw
η
s

k (x, P̃s; vs)δx and ψ(s) = ψ1(s)1{Wo < wηs} + ψ2(s)1{Wo <

wηs} with

ψ1(s) := 1
{
deg(o) = k in G(P̃⩾Wo

s , vs)
}
1

{
deg(o) > 0 in G(P̃<Wo

s , vs)
}

ψ2(s) := 1
{
deg(o) = k in G(P̃s, vs)

}
1

{
deg(o) > 0 in G(P̃<Wo

s , vs)
}
.

Here, P̃⩾Wo
s denotes the Poisson point process P̃s restricted to points with marks ⩾Wo.

In words, ψ(s) bounds the indicators of the two events that ξ̂w
η
s

s contains a point not
contained in ξw

η
s

s and vice versa.
Using the fact that P̃s is an independent superposition of P̃⩾Wo

s and P̃<Wo
s , we

can use the Mecke formula to write sE[ψ1(s)1{Wo < wηs}] = E[f1
s (Wo)1{Wo < wηs}],

with

f1
s (Wo) := s

k!
(
svsWoµ+(Wo)

)k exp(−svsWoµ+(Wo))
(
1− exp(−svsW a

o µ−(Wo))
)
.

Now, under the event {Wo < wηs}, we have that svsW a
o µ−(Wo) ⩽ svsw

(a+1)η
s F (wηs ),

where we used Lemma A.3.1 (1) to upper bound µ−(Wo). Next, we invoke Part 5
of Lemma A.3.1 to argue that svsw(a+1)η

s F (wηs ) < w(a+1)η−1
s log(s)F (wηs ). But, since
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w(a+1)η−1
s ⩽ w−(1−η)

s , we have that w(a+1)η−1
s log(s)F (wηs ) < w−(1−η)

s log(s)F (wηs ).
Now, we employ Assumption A.2 with an arbitrary value of K > 0 to conclude that

svsW
a
o µ−(Wo) ∈ o(1) if {Wo < wηs}. (A.6)

Hence,

E
[
f1
s (Wo)

∣∣Wo
]
⩽ exp

(
svsw

(a+1)η
s F (wηs )

)(
1− exp(−svsw(a+1)η

s F (wηs ))
)
→ 0.

For the second term ψ2, we write sE[ψ2(s)1{Wo < wηs}] = E[f2
s (Wo)1{Wo < wηs}],

with

f2
s (Wo) := s

k∑
ℓ=1

1
ℓ!

(
svsW

a
o µ−(Wo)

)ℓ exp(−svsW a
o µ−(Wo))

× 1
(k−ℓ)!(svsWoµ+(Wo))k−ℓ exp(−svsWoµ+(Wo))

= s

k!
(
svsh(Wo)

)k exp(−svsh(Wo))
k∑
ℓ=1

(k
ℓ

)(W a
o µ−(Wo)
h(Wo)

)ℓ(Woµ+(Wo)
h(Wo)

)k−ℓ
.

Again, invoking (SCG), it suffices to show that

k∑
ℓ=1

(k
ℓ

)(W a
o µ−(Wo)
h(Wo)

)ℓ(Woµ+(Wo)
h(Wo)

)k−ℓ
= 1−

(Woµ+(Wo)
h(Wo)

)k
tends to 0, which is true by Lemma A.3.1 (4).

Proof of Proposition A.4.1 Part 2: Reach approximation. We again invoke the Mar-
kov inequality and the Mecke formula to estimate,

dKR(ξ̂w
η
s

s , ξ̄Vo(s),wη
s

s ) ⩽ sE
[
ψ′(s)

]
,

where ψ′ = ψ′
1 1{Wo < wηs}+ ψ′

2 1{Wo < wηs} with Es := B(vsWoVo(s)/νd)1/d(o) and

ψ′
1(s) := 1

{
deg(o) = k in G(P̃⩾Wo

s ∩ Es, vs)
}
1

{
deg(o) > 0 in G(P̃⩾Wo

s ∩ Ecs, vs)
}

ψ′
2(s) := 1

{
deg(o) = k in G(P̃⩾Wo

s , vs)
}
1

{
deg(o) > 0 in G(P̃⩾Wo

s ∩ Ecs, vs)
}
.

Recall that we set Vo(s) = wK(η−1)
s for η ∈ (0, 1) and K > 0 and hence lims↑∞ Vo(s) =

∞. Note that, conditioned on Wo, the Poisson point processes P̃⩾Wo
s ∩Es and P̃⩾Wo

s ∩Ecs
are independent and thus, sE[ψ′

1(s)] = E[f ′1
s (Wo)1{Wo < wηs}] with

f ′1
s (Wo) := s

k!
(
svsWoµ̄+(Wo, Vo(s))

)k exp
(
−svsWoµ̄+(Wo, Vo(s))

)
×

(
1− exp

(
−svsWoµ̄−(Wo, Vo(s))

))
where we used the notation

µ̄+(Wo, Vo) := E
[
1{W ⩾Wo}W a

∫
1{u ⩽ Vo/W

a}φ(u) du
∣∣∣Wo

]
and

µ̄−(Wo, Vo) := E
[
1{W ⩾Wo}W a

∫
1{u ⩾ Vo/W

a}φ(u) du
∣∣∣Wo

]
.
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As before, we use the first part of f ′1
s to compensate for the coefficient s and the second

part to achieve the convergence to 0. Using Lemma A.4.7, we bound µ̄−(Wo, Vo) as
follows:

µ̄−(Wo, Vo) ⩽ E
[
W a

∫ ∞

Vo/Wa
φ(u) du

]
⩽ cV −δ

0

for some constant c > 0, where δ := (α− 1)/2. Noting that Woµ̄+(Wo, Vo(s)) ⩽ h(Wo)
we have

f ′1
s (Wo) ⩽ s

k!
(
svsh(Wo)

)k exp(−svsh(Wo)) exp
(
svsw

η
s

(
cwK(1−η)δ

s + waηs F (wηs )
))

×
(
1− exp

(
−csvswη+K(1−η)δ

s

))
,

where we used that, employing Lemmas A.3.1 and A.4.7,

h(Wo)−Woµ̄+(Wo, Vo) = Woµ̄−(Wo, Vo) +W a
o µ−(Wo) ⩽ cWoV

−δ
o +W a+1

o F (Wo).

Arguing as in the third step of the mark-approximation proof above, by (A.6), we
have that exp(svsw(a+1)η

s )F (wηs )→ 1, and hence, using (SCG),

E[f ′1
s (Wo) |Wo] ⩽ C exp

(
csvsw

η+K(1−η)δ
s

)(
1− exp

(
−csvswη+K(1−η)δ

s

))
.

To see that svswη+K(1−η)δ
s ∈ o(1), we invoke again Lemma A.3.1 (3) and Assump-

tion A.3 to see that for some c′ > 0,

svsw
η+K(1−η)δ
s ⩽ c′ log(s)wη+K(1−η)δ−1

s → 0.

For ψ′
2, we can argue similarly to the second error term in Step 3 of the proof

of the mark approximation. More precisely, we have sE[ψ′
2(s)1{Wo < wηs}] =

E[f ′2
s (Wo)1{Wo < wηs}] with f ′2

s (Wo) defined as

s
k∑
ℓ=1

1
ℓ!

(
svsWoµ̄−(Wo, Vo(s))

)ℓ exp(−svsWoµ̄−(Wo, Vo(s)))

× 1
(k − ℓ)!

(
svsWoµ̄+(Wo, Vo(s))

)k−ℓ(1− exp(−svsWoµ̄+(Wo, Vo(s)))
)

= s

k!
(
svsWoµ+(Wo)

)k
e−svsWoµ+(Wo)

k∑
ℓ=1

(k
ℓ

)( µ̄−(Wo, Vo(s))
µ+(Wo)

)ℓ( µ̄+(Wo, Vo(s))
µ+(Wo)

)k−ℓ

⩽
Cs

k!
(
svsh(Wo)

)k
e−svsh(Wo)esvsw

(a+1)η
o F (wη

s )
[
1−

( µ̄+(Wo, Vo(s))
µ+(Wo)

)k]
.

Again, using (SCG) and (A.6), it suffices to show that, under the event Wo < wηs ,

µ̄−(Wo, Vo(s))
µ̄+(Wo, Vo(s))

⩽
E

[
W a

∫ ∞
Vo(s)/Wa φ(u) du

]
E

[
W a 1{W ⩾ wηs}

∫ Vo(s)/Wa

0 φ(u) du
] ∈ o(1).

This is true since, first for the numerator, for all u, we have E[W a
1{W a ⩾ Vo(s)/u}] ⩽

µa and also lims↑∞ E[W a
1{W a ⩾ Vo(s)/u}] = 0 and thus, using dominated conver-

gence,

lim
s↑∞

E
[
W a

∫ ∞

Vo(s)/Wa
φ(u) du

]
=

∫ ∞

0
φ(u)E

[
W a

1{W a ⩾ Vo(s)/u}
]

du = 0.
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On the other hand, for the denominator, for all u, we have E
[
W a

1{W ⩾ wηs}1{W a ⩽
Vo(s)/u}

]
⩽ µa and lims↑∞ E

[
W a

1{W ⩾ wηs}1{W a ⩽ Vo(s)/u}
]

= µa and thus,
again by dominated convergence,

lim
s↑∞

E
[
W a

∫ ∞

Vo(s)/Wa
φ(u) du

]
=

∫ ∞

0
φ(u)E

[
W a

1{W a ⩾ Vo(s)/u}
]

du = µa.

This finishes the proof.

Proof of Proposition A.4.2

To prove Proposition A.4.2, we employ [16, Theorem 4.1]. To express the considered
functional in the framework of [16, Theorem 4.1], we first introduce additional notation.
To each point x we associate a deterministic compact set SV (x) from which the score
function of interest can be computed with high probability. In addition to SV (x),
[16, Theorem 4.1] also allows for the use of a more refined localization set S(x, ω),
which may be random in general. In the current setting, we do not require this
additional flexibility, as we have already implemented a truncation step the beginning
of Section A.4. Therefore, we set S(x, ω) := SV (x) := B(vsWxV/νd)1/d(x), to be the ball
of volume vsWxV around x.

Then, [16, Theorem 4.1] bounds the KR-distance between the process of interest
and a Poisson point process by a sum of four quantities. The first of them is the
total variation between the corresponding intensity measures. The remaining three
quantities, denoted by E1, E2, E3, concern higher-order deviations. Note that, since
we choose S(x, ω) = SV (x), the E1 term is identically 0. Hence, we formally state
three remaining separate auxiliary results, Lemmas A.4.8–A.4.11 below. The proofs
follow afterward.

We begin with the intensity measures. By the homogeneity of the approxima-
tions, the intensity measure Ls(dx) of ξ̄Vo(s),wη

s
s has the constant Lebesgue density∫

Ω E[ḡVo(s),wη
s

k (x, P̃s)]Ks(dx), where ḡVo(s),wη
s

k ≡ ḡvsWxVo(s),wη
s

k for brevity.

Lemma A.4.8 (Convergence of intensity measures). Under Assumptions A.1–A.3,
we have that

lim
s↑∞

dTV(Ls,Leb) = 0. (A.7)

Proof. First, note that

dTV(Ls,Leb) ⩽
∣∣∣∫

Ω
E[ḡVo(s),wη

s

k (x, P̃s)]βKs(dx)− 1
∣∣∣

⩽
∫

Ω
E

[∣∣ḡVo(s),wη
s

k (x, P̃s)− gk(x, P̃s)
∣∣]βKs(dx)

⩽ sE
[∣∣ḡVo(s),wη

s

k (o, P̃s)− gk(o, P̃s)
∣∣ ∣∣Wo

]
,

where we used Lemma A.2.1 and the Mecke formula. Step-by-step reintroducing the
mark- and reach approximations, we see that

sEo
[∣∣ḡVo(s),wη

s

k (o, P̃s)− gk(o, P̃s)
∣∣] ⩽ sEo[ψc(s) + ψ(s) + ψ′(s)],
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where Eo is the expectation with respect to the Palm distribution of the point process
P̃s, that is, the conditional distribution of P̃s given that it contains a point at the
origin. The right-hand side tends to 0 as s tends to infinity using the same arguments
as in the proof of Proposition A.4.1.

As described above, the following statement is immediate.

Lemma A.4.9 (Convergence of E1). We have that

lim
s↑∞

∫
Ω
E

[
1

{
S(x, P̃s) ̸⊆ SVo(s)(x)

}
ḡ
Vo(s),wη

s

k (x, P̃s)
]
Ks(dx) = 0. (A.8)

Here are the remaining requirements.

Lemma A.4.10 (Convergence of E2). If Assumption A.2 holds, then we have that

lim
s↑∞

∫
Ω2
1{SVo(s)(x) ∩ SVo(s)(z) ̸= ∅}

× E
[
ḡ
Vo(s),wη

s

k (x, P̃s)
]
E

[
ḡ
Vo(s),wη

s

k (z, P̃s)
]
Ks(dz)Ks(dx) = 0.

(A.9)

Proof. By symmetry, we can insert 21{Wz ⩾Wx}. Then, under this event,

1{SVo(s)(x) ∩ SVo(s)(z) ̸= ∅} ⩽ 1{x ∈ B2(vsVo(s)Wz/νd)1/d(z)},

and hence, also using that Wz ⩽ wηs and translation invariance, the integral on the
left-hand side of (A.9) is bounded from above by

2dvswηsVo(s)E[sḡVo(s),wη
s

k (o, P̃s)]2,

where lims↑∞ E[sḡVo(s),wη
s

k (o, P̃s)] = 1 by Lemma A.4.8. Hence, using 1 ⩽ 2sF (wηs ) and
Lemma A.3.1 (5) we have for some c > 0,

vsw
η−K(1−η)
s ⩽ c log(s)w−(K+1)(1−η)

s F (wηs ),

which by Assumption A.2 tends to 0 as s→∞.

Lemma A.4.11 (Convergence of E3). Under Assumption A.2, we have that

lim
s↑∞

∫
Ω2
1{SVo(s)(x) ∩ SVo(s)(z) ̸= ∅}

× E[ḡVo(s),wη
s

k (x, P̃s ∪ {z})ḡVo(s),wη
s

k (z, P̃s ∪ {x})]Ks(dz)Ks(dx) = 0.
(A.10)

Proof. Again, by symmetry, we may insert the indicator of the event 1{Wz ⩽Wx}, to
obtain 1{SVo(s)(x) ∩ SVo(s)(z) ̸= ∅} ⩽ 1{x ∈ B2(vsVo(s)Wx/νd)1/d(z)}. The important
observation is that ḡVo(s),wη

s
k (x, P̃s ∪ {z}) only takes into account nodes with weight

exceeding Wx and therefore the point z can be neglected. As Wz ⩽ wηs , the integral
in the left-hand side of (A.10) is bounded above by

2F (wηs )
∫

Ω2
1{SVo(s)(x) ∩ SVo(s)(z) ̸= ∅}E[ḡVo(s),wη

s

k (x, P̃s)]Ks(dz)Ks(dx)

⩽ 2F (wηs )
∫

Ω2
1{x ∈ B2(vsVo(s)wη

s )1/d(z)}E[ḡVo(s),wη
s

k (x, P̃s)]Ks(dz)βKs(dx)

⩽ 4svswηsVo(s)F (wηs )E[sḡVo(s),wη
s

k (o, P̃s)],
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where lims↑∞ E[sḡVo(s),wη
s

k (o, P̃s)] = 1 by Lemma A.4.8. For this, invoking again
Lemma A.3.1 (5), we have for some c > 0

svsw
η−K(1−η)
s F (wηs ) ⩽ c log(s)w−(K+1)(1−η)

s F (wηs ),

which by Assumption A.2 tends to 0 as s→∞.
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On the topology of higher-order
age-dependent random
connection models
Christian Hirsch and Péter Juhász

Abstract: In this paper, we investigate the potential of the age-dependent
random connection model (ADRCM) to represent higher-order networks. A key
contribution of our work is the derivation of probabilistic limit results in large
domains. More precisely, we first prove that the higher-order degree distributions
have a power-law tail. Second, we establish central limit theorems for the
edge counts and Betti numbers of the ADRCM in the regime where the degree
distribution is light-tailed. Moreover, in the heavy-tailed regime, we prove that
asymptotically, the recentered and suitably rescaled edge counts converge to a
stable distribution. We also propose a modification of the ADRCM in the form
of a thinning procedure that enables independent adjustment of the power-law
exponents for vertex and edge degrees. To apply the derived theorems to finite
networks, we conduct a simulation study illustrating that the power-law degree
distribution exponents approach their theoretical limits for large networks. It also
indicates that in the heavy-tailed regime, the limit distribution of the recentered
and suitably rescaled Betti numbers is stable. We demonstrate the practical
application of the theoretical results to real-world datasets by analyzing scientific
collaboration networks based on data from arXiv.

Disclaimer: This chapter is a copy of the below publication without significant
modifications compared to its published version.
C. Hirsch and P. Juhász. On the topology of higher-order age-dependent random connection
models. Methodol. Comput. Appl. Probab., 27(2): Paper No. 44, 41., 2025.

The specific changes made to the paper, apart from minor typographical correc-
tions, are listed in Section Errata.





B.1. Introduction

B.1 Introduction
In recent decades, the field of complex networks has emerged as a powerful framework
for analyzing systems whose properties cannot be understood by studying their parts
in isolation. The human brain, collaboration among researchers, the interaction of
chemical elements, technological infrastructures, or the evolution of species are some
examples of complex systems in which studying the relationships between the parts is
inevitable [6, 53]. For instance, a collaboration network of scientists based on data
from arXiv is illustrated in Figure B.1, where vertices represent authors of publications
and a simplex represents each document.

In addition to a descriptive approach, it is often desirable to develop a stochastic
model for generating synthetic networks. The key advantage of creating such a
stochastic model representation is that it enables a more refined analysis and a tool to
understand properties of a complex system more deeply. Through this approach, it
becomes feasible to reveal effects that remain hidden in an actual dataset, particularly
if its size is not large enough. For an excellent discussion on complex network models
as null models, we also refer the reader to van der Hofstad et al. [103].

The traditional approach to modeling complex systems relies on binary networks,
where vertices represent the parts of the system, and the connections between them
define their relationships. At the turn of the century, the field of complex networks
experienced a rapid growth due to the insight that networks occurring in a wide variety
of disciplines share a common set of key characteristics.

In their seminal work, Barabási and Albert [3] discovered that many key empirical
features of complex networks are explained by a surprisingly simple preferential
attachment model. Loosely speaking, it provides mathematical precision to the idea
that many real networks emerge through a rich-get-richer mechanism. In addition to
the broad impact of network science in various application domains, complex networks
have also become the subject of intense research activity in mathematics, where
rigorous mathematical proofs have been provided for many of the effects previously
empirically identified in network science [102]. In particular, the analysis of large

Figure B.1: The largest component of a higher-order network of scientists
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preferential attachment models has become a highly fruitful research topic leading to
results such as the limiting distributions of various network characteristics [30, 31].

One of the shortcomings of the standard preferential attachment models is that they
lead to tree-like structures, thus failing to reproduce the clustering property observed
in real-world networks. To address this issue, among others, spatial variants of the
preferential attachment models have been proposed [57, 58]. Here, the network nodes
are embedded in Euclidean space, allowing the preferential-attachment rule to take
spatial positions into account. While the embedding produces the desired clustering
effects, it complicates the mathematical analysis. Subsequently, it was realized by
Gracar et al. [40] that a simplified construction rule could also realize the decisive scale-
free and clustering properties of the spatial preferential attachment mechanism. In the
age-dependent random connection model (ADRCM), the connection probability to an
existing vertex now depends on the age rather than the in-degree of that vertex. In
particular, knowing the age of a vertex does not require any information on the network
structure in the neighborhood of that vertex. This provides a significantly greater
degree of spatial independence, which substantially simplifies many mathematical
derivations. Later, Komjáthy and Lodewijks [64], Gracar et al. [42] described a more
general framework for incorporating weights into the connection mechanism.

As traditional network analysis was designed to study pairwise relationships between
entities, simple network models are not capable of modeling higher-order interactions
involving more than two entities. The study of higher-order network models has recently
gained special attention due to its ability to capture these multibody relationships
that a simple network model cannot handle. Among others, the need for higher-order
relationships arises in scientific collaboration networks. Beyond collaboration networks,
the study of group relationships can already explain several phenomena, such as the
synchronization of neurons or the working mechanism of supply chain routes [108].

We model higher-order networks using simplicial complexes, which generalizes
a graph to represent group interactions among more than two entities. In this
framework, relationships are represented by simplices of various dimensions. For
example, a 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle
representing a three-way relationship, and in general, a k-simplex corresponds to
a set of k + 1 interconnected vertices. The key benefit of modeling higher-order
networks with simplicial complexes is that we can describe the networks using tools
from topological data analysis (TDA), which provide further insights compared to
those of traditional graph-theoretic analysis. This form of analysis was carried out in
several studies [2, 20, 83, 90].

While these studies investigate different datasets and rely on different TDA tools
to analyze them, none of these works proposes a mathematical model to represent
such higher-order networks. Previously, Fountoulakis et al. [37] considered a stochastic
model for higher-order complex networks. However, as this model relies on a form of
preferential attachment mechanism, even deriving the asymptotic degree distribution
is highly involved. In contrast, since the ADRCM relies on a far simpler connection
mechanism, we can derive results in the present paper that are substantially more
refined than those based on the degree distribution.
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The main contributions of the present work are as follows:

(1) We begin by rigorously proving that the higher-order degree distributions follow
a power law.

(2) As a basis for hypothesis tests, we provide central limit theorems (CLTs) and
stable limit theorems for the edge count and Betti numbers.

(3) Recognizing the limitations of the ADRCM, we propose a model extension of the
ADRCM capable of matching both any given admissible vertex- and edge-degree
exponents.

(4) Since these results are proved in the limit for large networks, we support the
validity of these results for finite-size networks through conducting a simulation
study.

(5) Showing the convergence of the related quantities for finite-size networks, we
proceed by developing statistical tests for finite networks based on the number
of triangles and the Betti numbers for different parameter regimes.

(6) Finally, we illustrate the use of these hypothesis tests for analyzing real-world
collaboration networks.

We now expand on the above points in more detail, referring to Section B.2 for further
information.

As discussed earlier, the ADRCM stands out as an appealing model due to its ability
to replicate key features—power-law distributed vertex degrees and a high clustering
coefficient—observed in real-world complex networks, while also being mathematically
tractable. In light of this, our approach utilizes the ADRCM as a foundation and
endows it with a higher-order structure by forming the clique complex. That is, the
simplices in this complex are the cliques of the underlying graph. A set of k+1 vertices
forms a k-simplex if and only if it is a k-clique, i.e., if and only if there is an edge
between every pair of the k + 1 vertices.

While for binary networks, the degree distribution is arguably the most fundamental
characteristic, for higher-order networks, it is essential to understand also higher-order
adjacencies. Hence, to extend the concept of degree distributions to higher-order
networks, we draw upon the idea of generalized degrees introduced by Bianconi and
Rahmede [11]. For m′ ⩾ m, one considers the distribution of the number of m′-
simplices containing a typical m-simplex as a face. For instance, the standard vertex
degree corresponds to the scenario where (m,m′) = (0, 1). One of the fundamental
findings by Gracar et al. [40] is that in the ADRCM, the vertex-degree distribution
satisfies a power law. As another example, for (m,m′) = (1, 2) the edge degree counts
the number of triangles adjacent to a given edge. In Theorem B.2.1, we show that the
generalized degrees also adhere to a power-law distribution. Furthermore, we relate
the exponents of the higher-order degree distribution to the exponent governing the
vertex-degree distribution. We pay special attention to the edge-degree distribution,
since the formation of triangles in complex spatial networks is also of high interest for
determining the clustering coefficient, as explored by van der Hofstad et al. [103, 104].
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In our second main result, we find that the distribution of the recentered and
rescaled edge count in the ADRCM converges to a normal distribution for light-tailed
degree distribution and to a stable distribution for heavy-tailed degree distributions
(Theorems B.2.3 and B.2.4). Based on our simulation study, we conjecture that these
asymptotic results can be extended to higher-dimensional simplices.

Next, turning our focus to the features relevant in TDA, we continue with the
analysis of the distribution of the Betti numbers of the clique complexes generated by
the ADRCM. Betti numbers are topological invariants that quantify the number of holes
in different dimensions within a simplicial complex, which describe the higher-order
connectivity of a network:

• the 0th Betti number β0 counts the number of connected components;

• the 1st Betti number β1 is the number of independent loops in the network;

• the 2nd Betti number β2 captures the number of voids enclosed by triangular
faces.

Higher Betti numbers continue this pattern, corresponding to higher-dimensional holes.
Siu et al. [98] derived asymptotic expressions for the growth rate of the expected
Betti numbers in nonspatial preferential attachment models. In contrast, the focus
of our study is on the fluctuations around the expectation, enabling the application
of hypothesis tests. In Theorem B.2.2, we prove a CLT for the Betti numbers if the
degree distribution is sufficiently light-tailed. We also conjecture that for other values
of the model parameters, the distribution of Betti numbers follows a stable distribution.
Again, this hypothesis gains credibility through the results of our simulation study,
supporting the above conjecture.

By analyzing the empirical distributions within the arXiv dataset, we find that the
relationship between the exponents governing vertex and edge degrees, as stated in
Theorem B.2.1, is too rigid to be applicable in real-world scenarios. To address this
limitation, we present a model extension that provides greater flexibility to the original
ADRCM by introducing a new parameter. The primary challenge in establishing this
result is to ensure that we can independently adjust the edge-degree exponent while
maintaining the vertex-degree exponent. More precisely, we proceed as follows: First,
we adjust the original parameters of the ADRCM to increase both the vertex- and
edge-degree exponents, so that the edge-degree exponent reaches the desired value.
Then, we apply a dependent thinning operation involving the random removal of
a fraction of certain edges that do not affect the edge-degree exponent, but which
decrease the vertex-degree exponent. These steps lead to the desired greater flexibility
between vertex and edge degrees formalized in Theorem B.2.5.

Our theoretical results presented above hold in the limit for extensive networks.
For applications to real data, we accompany our theoretical results with a simulation
study.

• First, we explore the finite-size effects on higher-order degree distributions by
examining the rate of convergence of the degree distribution exponents to their
theoretical limits. We observe that the fluctuations of the exponents around
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their theoretical values decrease as the network size increases. The simulations
also reveal that apart from their fluctuations, the exponents have a bias due to
the finite size. An interesting aspect of the simulation study is that, through
Palm theory, we can simulate typical simplices in infinite networks that are free
from finite-size effects.

• Simulating three sets of networks with different model parameters, we validate
our theoretical results regarding the edge-count distributions. Furthermore, we
also estimate the parameters of the distributions that are not explicitly derived
in the theorems. Finally, we discover the finite-size effects that are the most
prominent in certain boundary cases.

• As for the exploration of the edge-count distribution, we conduct a similar analysis
for the Betti numbers. This analysis supports our conjectures concerning the
stable distribution of Betti numbers.

Next, we demonstrate the application of the theorems to four real-world collabora-
tion networks of scientists based on arXiv data. After a general exploratory analysis,
we analyze the vertex- and edge-degree distribution exponents.

Based on the fitted vertex-degree exponents of the datasets, we fix the model
parameters to use the ADRCM for further analysis of collaboration networks. These
fitted parameters guarantee that the vertex-degree exponent and the edge count are
modeled correctly. Thus, instead of the edge count, we conduct hypothesis tests based
on the triangle count, where the null hypothesis is that the ADRCM well describes
the dataset. Similar tests are also conducted for the Betti numbers.

The results of the hypothesis tests reveal that the topological structure of scientific
collaboration networks is highly complex. In particular, an elementary two-parameter
model, such as the ADRCM, is not enough to capture all aspects of higher-order
networks.

The rest of the manuscript is organized as follows. Section B.2 presents our
main theoretical results regarding higher-order networks generated by extending the
ADRCM model to a clique complex. Sections B.3, B.4, B.5, B.6 contain the proofs
of the theorems stated in Section B.2. Section B.7 details the simulation study to
demonstrate the validity of the asymptotic results discussed in Section B.2 for finite
networks. Section B.8 illustrates the application of the ADRCM model to higher-order
networks of scientific collaborations. Lastly, Section B.9 provides a summary and
outlines ideas for future research directions.

B.2 Model and main results
The higher-order network model discussed in this paper is an extension of the ADRCM,
which we recall here for the reader’s convenience. In this network model, vertices arrive
according to a Poisson process and are placed uniformly at random in the Euclidean
space. Two vertices are connected with a probability given by the profile function,
which is a function of the distance and the ages of the vertices.
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As justified below, we restrict our attention to the special case of latent Euclidean
dimension d = 1 and profile function φ(r) := 1{r ∈ [0, 1]}. Let P := {Pi} :=
{(Xi, Ui)}i⩾1 be a unit-intensity Poisson point process on R× (0, 1], let β > 0 and γ ∈
(0, 1). Then, for (x, u), (y, v) ∈ R × (0, 1] with u ⩽ v, there is an edge from (y, v)
to (x, u), in symbols (y, v)→ (x, u), if and only if

|x− y| ⩽ β
2u

−γv−(1−γ),

where β > 0 is a parameter governing the edge density. We henceforth denote this
network by G := G(P).

We stress that the framework developed by Gracar et al. [40] allows treating
arbitrary dimensions and far more general connection functions. However, the results
by Gracar et al. [40], van der Hofstad et al. [104] indicate that many of the key network
properties, such as the scaling of the vertex degrees or the clustering coefficient,
depend neither on the dimension nor the connection function. We expect that a similar
observation holds for higher-order characteristics; therefore, we decided to work with
the simplest form of the ADRCM, which significantly reduces the level of technicality
in the presentation of the proofs.

While G determines the binary vertex interactions, in many applications, higher-
order interactions play a crucial role. The key idea for taking this observation into
account is to extend G to a simplicial complex. The most popular approach for
achieving this goal relies on the clique complex [33]. Here, a set of k + 1 vertices forms
a k-simplex if and only if it is a k-clique, i.e., if and only if there is an edge between
every pair of the k + 1 vertices. To ease readability, we will henceforth also write
G = G(P) not only for the binary ADRCM network but also for the clique complex
generated by it.

While Gracar et al. [40] analyzes several key characteristics of the ADRCM consid-
ered as a binary network, we focus on its simplicial structure. Specifically, we deal with
the higher-order degrees and the Betti numbers, which we introduce in Sections B.2
and B.2, respectively.

Higher-order degree distribution

Arguably, the most fundamental characteristic of complex networks is the degree
distribution. While the standard degree distribution provides an important summary
of a complex network, it ignores higher-order structures. Therefore, Courtney and
Bianconi [24] argues to consider generalized degrees that can convey information on
the adjacency structure of simplices of varying dimensions.

To define the typical vertex degree, the idea is to add to P a distinguished typical
vertex of the form o = (0, U) where U is uniform in (0, 1] and independent of P [40].
We let G∗ = G(P ∪ {o}) denote the ADRCM constructed on the extended vertex
set. Then, the typical vertex degree is that of o in G∗. We define the tail of the
vertex-degree distribution d0,1(k) to be

d0,1(k) = P
(
deg1(o) ⩾ k

)
,

i.e., the probability that the typical vertex degree exceeds k ⩾ 0. In this context,
Gracar et al. [40] proved that the ADRCM is scale-free in the sense that the degree
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distribution satisfies a power law:

lim
k↑∞

log(d0,1(k))/ log(k) = −1/γ.

While higher-order vertex degrees provide a more refined picture than the standard
vertex degrees, it is also important to go beyond vertices by considering higher-
dimensional simplices as well.

To study generalized degrees, we define the higher-order degree of an m-simplex ∆ ⊆
G as

degm′(∆) := |{σ ∈ G : σ ⊃ ∆, |σ| = m′ + 1}|,

represented as the number of m′-simplices containing ∆. For instance, (m,m′) = (0, 1)
recovers the standard vertex degree and the higher-order vertex degree degm′(v) of
the vertex v denotes the number of m′-simplices that are incident to v.

To study the generalized degree distributions, we consider typical simplices via
the concept of the Palm distribution. Palm theory provides a rigorous framework for
analyzing typical objects in point processes. In our context, this allows us to define and
study a typical representative of the simplices in the network. Here, we describe the
specific setting needed in the present paper, and refer the reader to Last and Penrose
[66] for a more general introduction to Palm theory. For m ⩾ 0, we can consider the
m-simplices ∆m = {P0, . . . , Pm} in G as a marked point process by centering ∆m at
its oldest vertex c(∆m). Let Tm(P) denote the family of m-simplices in the clique
complex on G. Then, the expectation of a function f of the typical m-simplex ∆∗

m is
given by

E[f(∆∗
m,P)] = 1

λm
E

[ ∑
∆∈Tm(P)

1{c(∆) ∈ [0, 1]}f
(
∆− c(∆),P − c(∆)

)]
, (B.1)

where λm > 0 is the simplex density and where f : Cm×Nloc → [0,∞) is any measurable
function from the space Cm of distinct (m+ 1)-tuples of points in R× (0, 1] and the
space of locally finite point processes to [0,∞), and which is symmetric in the first m+1
arguments.

In the present paper, we extend the result of Gracar et al. [40, Proposition 4.1] by
considering the generalized simplex-degree distribution

dm,m′(k) = P
(
degm′(∆m) ⩾ k

)
,

represented as the distribution of the number of m′-simplices incident to ∆∗
m.

Theorem B.2.1 (Power law for the typical simplex degree). Let γ ∈ (0, 1) and
m′ > m ⩾ 0. Then,

lim
k↑∞

log(dm,m′(k))/ log(k) = m− (m+ 1)/γ.
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Central and stable limit theorems

As outlined in Section B.1, to decide whether a given model is a good fit for a dataset,
it is important to be able to carry out statistical hypothesis tests. In this work,
we discuss possible hypothesis tests that become asymptotically exact for growing
networks. While higher-order degree distributions are an important tool for describing
higher-order networks, they only provide a highly restricted view of the topological
structure. The idea behind TDA is to rely on invariants from algebraic topology for
extracting more refined shape-related information. In this context, one of the most
celebrated characteristics is the Betti numbers, which can be interpreted as the number
of topological holes in a dataset. For a more detailed explanation of Betti numbers,
we refer the reader to Hiraoka et al. [48]. One attractive way to develop a hypothesis
test is to show that the considered test statistic becomes asymptotically normal. This
is the content of the following theorem. Here, we write βn,q for the qth Betti number
of the clique complex G(P ∩ [0, n]).

Theorem B.2.2 (CLT for the Betti numbers). Let q ⩾ 0 and 0 < γ < 1/4. Then,
n−1/2(βn,q − E[βn,q]) converges in distribution to a normal distribution.

A disadvantage of Theorem B.2.2 is that our proof imposes a substantial constraint
on the parameter γ. In particular, Theorem B.2.2 considers a regime where the
variance of the degree distribution is finite, while for many real-world datasets it is
infinite. Note that for large values γ, the ADRCM gives rise to extremely long edges,
which makes it difficult to control spatial correlations over long distances, which is the
main challenge in the proof. While we expect that by a more careful argumentation in
the proof of Theorem B.2.2, the range of γ could be extended, we conjecture that the
asymptotic normality breaks down for values of γ > 1/2. To provide evidence for this
conjecture, we now illustrate that a similar effect occurs for a more elementary test
statistic, namely, the edge count

Sn :=
∣∣{(y, v)→ (x, u) : (y, v), (x, u) ∈ P, x ∈ [0, n]}

∣∣.
The key observation is that depending on whether γ is smaller or larger than 1/2,

the variance of Sn at a typical vertex is either finite or infinite. Hence, we should only
expect a CLT in the finite variance regime. We show that this is indeed the case.

Theorem B.2.3 (CLT for the edge count). Let γ < 1/2. Then, the quantity
Var(Sn)−1/2(Sn − E[Sn]) converges in distribution to a standard normal distribution.

For γ > 1/2 since the degree distribution is heavy-tailed, the right tails in the
edge count are more pronounced than those of a normal distribution. For many
combinatorially defined network models, such as the configuration model, the degrees
are taken to be i.i.d. from a given distribution. Hence, here the limiting vertex-degree
distribution follows from the classical stable central limit theorem [107, Theorem 4.5.2].
We also refer the reader to van der Hofstad et al. [103] for a discussion in this direction.
However, we are not aware of any existing corresponding results for spatial networks,
which often feature strong spatial correlations between the individual vertex degrees.
Hence, the main challenge in proving Theorem B.2.4 is to understand and overcome
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these correlations to extend the results from the combinatorial networks to spatial
network models.

Theorem B.2.4 (Stable limit law for the edge count). Let γ ∈ (1/2, 1). Then,
n−γ(Sn−E[Sn]) converges in distribution to Sγ−1 , where S is a 1/γ-stable distribution.

Model extensions

Theorem B.2.1 expresses the power-law exponent of the vertex-degree distribution and
the edge-degree distribution in terms of γ. However, as we will illustrate in Section B.8,
when analyzing datasets of scientific collaborations, the relation between the vertex
and edge exponents suggested in Theorem B.2.1 may often be violated in real datasets.
More precisely, for a given vertex-degree exponent, we found the edge degrees in the
data to be substantially more heavy-tailed than suggested in Theorem B.2.1. In other
words, real datasets exhibit a larger proportion of edges incident to many triangles
than what can be realized by the ADRCM. Alternatively, we could choose γ to match
the power-law exponent of the edge degrees in the data. In this case, however, the
vertex degrees of the fitted model would exhibit too heavy tails.

To address this shortcoming, we propose a model extension thinned age-dependent
random connection model (TADRCM), where we remove some edges so that the power-
law exponent of the edge degrees is not affected. The key observation is that for edges
with high edge degrees, typically, both endpoints are very old. However, only a tiny
proportion of vertices connect to more than one very old vertex. More precisely, we
say that an edge (z, w)→ (x, u) is protected if w ⩽ 2u or if there exists a vertex (y, v)
with v ⩽ 2u ⩽ 4v with (z, w)→ (y, v). An edge is exposed if it is not protected. Then,
we define the TADRCM Gth, η of G by removing independently exposed edges. The
key idea is to use a retention probability of uη, where η > 0 is a new model parameter.
Our next main result is the following analog of Theorem B.2.1 for the thinned model,
where dth,η

m,m′ is defined as dm,m′ , except that we use the TADRCM instead of the
ADRCM.

Theorem B.2.5 (Power law for the thinned typical vertex and edge degree). Let
γ ∈ (1/2, 1) and η > 0 be such that 2/γ − 1 > 1/(γ − η). Then,

(a) limk↑∞ log(dth,η
0,m′(k))/ log(k) = −1/(γ − η), and

(b) limk↑∞ log(dth,η
1,m′(k))/ log(k) = 1− 2/γ.

We stress that alternative approaches also exist to enhance the flexibility of the
ADRCM. For instance, van der Hofstad et al. [104] introduced a different extension,
focusing on clustering properties. However, in the scope of our work, we found the
thinning-based model more convenient for two reasons. First, as shown in Theo-
rem B.2.5, the parameters γ and η are transparently related to the vertex and edge
degrees, which substantially simplifies fitting the model to datasets. In contrast,
van der Hofstad et al. [104] discussed a model where the connection between the model
parameters and degree exponents is less obvious, and it is not immediate which combi-
nations of higher-order degrees can be realized in the model. Second, when carrying out
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the proofs, it is convenient that in the ADRCM, the out-degree is Poisson-distributed
independently of the vertex age. Although we expect that our proofs could be adapted
to the extension from van der Hofstad et al. [104], some steps would require additional
work.

B.3 Proof of Theorem B.2.1—power-law exponents for
higher-order simplex degrees

In this section, we establish Theorem B.2.1, i.e., we compute the power-law exponents
for the higher-order simplex degrees in the ADRCM. To achieve this goal, we consider
the lower and upper bounds separately in Sections B.3 and B.3, respectively.

To prepare the proof, we start with an integral representation for the distribution
of the typical m-simplex ∆∗

m. While (B.1) provides a conceptually clean definition
of the expectation of a function of a typical m-simplex, it is not ideal for carrying
out actual computations. For this reason, we derive an alternative representation in
Proposition B.3.1 below.

In this representation, we write o := o0 := (0, u) with u ∈ (0, 1] for the typical
vertex at the origin and

om := (o1, . . . , om) :=
(
(y1, v1), . . . , (ym, vm)

)
∈ Sm := (R× (0, 1])m

for the remaining vertices. Then, we let gm(u,om) denote the indicator of the event
that (o0,om) forms an m-simplex in the ADRCM with u ⩽ v1 ⩽ · · · ⩽ vm. Henceforth,
we let Ir(x) := [x− r/2, x+ r/2] denote the interval of side length r > 0 centered at
x ∈ R. We let Nloc denote the family of all locally finite subsets of S.

Proposition B.3.1 (Distribution of the typical m-simplex). Let m ⩾ 1. Then,

E[f(∆∗
m,P)] =

∫ 1

0

∫
Sm

E[f({o,om},P ∪ {o,om})]gm(u,om) dom du∫ 1

0

∫
Sm
gm(u,om) dom du

for any measurable f : Cm ×Nloc → [0,∞), which is translation-covariant in the sense
that f((x+ y, u), φ+ y) = f((x, u), φ) for every (x, u) ∈ S, y ∈ R and φ ∈ Nloc.

To ensure that the Palm version is well-defined, we need to show that the denomi-
nator is finite. We formulate this property as a separate auxiliary result. First, define
the function

µm(u) :=
∫
Sm
gm(u,om) dom.

For instance, µ0 ≡ 1 and also for m = 1, the expression simplifies. To that end, we
write

M(p) := {p′ ∈ S : p′ → p}

for the set of all space-time points connecting to p ∈ S. Then,

µ(u) := µ1(u) = |M(o)| =
∫ 1

u

∣∣Iβu−γv−(1−γ)(0)
∣∣ dv = β

γ (u−γ − 1) (B.2)
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is the expected in-degree of the typical vertex. That is, µ1(u) = E[Din(u)], where

Din(u) :=
∣∣P ∩M(o)

∣∣
is the in-degree of the typical vertex o.

For general m ⩾ 1, we can derive the small-u asymptotics.

Lemma B.3.2 (Asymptotics for µm(u)). Let m ⩾ 1, γ ∈ (0, 1) and η > 0. Then,
µm(u) ∈ O(u−γ−η).

Proof. First,∫
S
gm(u,om) dom ⩽ gm−1(u,om−1)

∫ 1

0

∣∣I
βv−γ

m−1v
−(1−γ)
m

(ym−1)
∣∣ dvm

= β
γ gm−1(u,om−1)v−γ

m−1.

Next, ∫
S
gm−1(u,om−1)v−γ−η

m−1 dom−1 ⩽ gm−2(u,om−2)
∫ 1

vm−2
βv−γ

m−2v
−1−η
m−1 dvm−1

⩽ β
η gm−2(u,om−2)v−γ−η

m−2 .

Hence, iterating this bound yields that µm(u) ⩽ βmu−γ−η/(γηm−1), as asserted.

Proof of Proposition B.3.1. Let g′
m(P0, . . . , Pm) be the indicator of the event that

{P0, . . . , Pm} forms an m-simplex in the ADRCM with U0 ⩽ · · · ⩽ Um. Let A ⊆ R be
a Borel set with |A| = 1. Then

λm E[f(∆∗
m,P)] = E

[ ∑
P0,...,Pm∈Pm+1

̸=
U0⩽···⩽Um

1{X0 ∈ A}f
(
{P0, . . . , Pm},P

)
g′
m(P0, . . . , Pm)

]
.

Then, writing p = (p1, . . . , pm), by the Mecke formula [66, Theorem 4.4],

λm E[f(∆∗
m,P)] =

∫
A×(0,1]

∫
Sm

E
[
f({p0,p},P)

]
g′
m({p0,p}) dp dp0.

As |A| = 1, a substitution pm = om + p0 and an application of Fubini’s theorem give
that

λm E[f(∆∗
m,P)] =

∫ 1

0

∫
Sm

E
[
f({o,om},P)

]
gm(u,om) dom du.

Hence, evaluating this equality for f = 1 concludes the proof.

Proof of the lower bound

Next, we prove the lower bound by relying on the Palm representation derived in
Proposition B.3.1. More precisely, we produce specific configurations of u,om that
occur with sufficiently high probability and such that P(degm′(u,om) ⩾ k) is bounded
away from 0.
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Proof of Theorem B.2.1, lower bound. To ease notation, we put β′ := β/2. First, let
p := P(P([0, β′]× [3/4, 1]) ⩾ m′) denote the probability that a (β′ × 1/4)-box contains
at least m′ Poisson points. Furthermore, let M := ⌈2/p⌉. Then, consider the set
Bk ⊆ (0, 1]m+1 × Rm given by

Bk := [0, β′k]m ×B′
k with B′

k :=
m∏
j=0

[( j

Mmk

)1/γ
,
( j + 1
Mmk

)1/γ]
.

Since |Bk| ∈ Ω(k−(m+1)/γ+m), we only need to verify the following two items for every
(u,om) ∈ Bk.

(a) The (o,om) points form an m-simplex in the clique complex of the ADRCM.

(b) It holds that P(degm′(u,om) ⩾ k) ⩾ 1/2.

For Part (a), note that every (u,om) ∈ Bk indeed defines an m-simplex since

max
i⩽m
|yi| ⩽ β′k ⩽ β′((Mk)−1/γ)−γ and max

i,j⩽m
|yi − yj | ⩽ β′k ⩽ β′((Mk)−1/γ)−γ .

For Part (b), we note that the events Ei,k := {P([iβ′, (i + 1) β′] × [3/4, 1]) ⩾ m′}
are independent for i ⩽ kM . Moreover, let Nk :=

∑
i⩽kM 1{Ei,k} be the number

of events that occur. Then, Nk is a binomial random variable with kM trials and
success probability p. Since kMp ⩾ 2k, the binomial concentration result implies that
P(Nk ⩾ k) ⩾ 1/2 holds for sufficiently large k.

Hence, it suffices to show that almost surely, Nk ⩽ degm′(u,om). To achieve this
goal, we first note that for fixed i ⩽ kM any two points in [i β′, (i + 1)β′] × (0, 1]
are connected by an edge. Moreover, we claim that any (Z,W ) ∈ [0, β′kM ]× [3/4, 1]
connects to o and to every oi, i ⩽ m. Now,

|Z − 0| ⩽ β′kM = β′((kM)−1/γ)−γ and max
i⩽m
|Z − yi| ⩽ β′kM = β′((kM)−1/γ)−γ .

This concludes the proof since the Poisson concentration inequality [88, Lemma 1.2]
implies that P(P(Bk) ⩾ k)→ 1 as k →∞.

Proof of the upper bound

In this subsection, we prove the upper bound for the simplex degree in Theorem B.2.1.
First, to provide the reader with a gentle introduction, we present the case of the
in-degree, which was considered previously by Gracar et al. [40, Proposition 4.1]. In
fact, [41, Lemma 4] is slightly more refined than Theorem B.2.1 in the sense that it
provides not only the asymptotics for the tail probabilities but for the entire probability
mass function. Nevertheless, we include the short argument here because it makes
the presentation self-contained and provides an intuition for the more complicated
higher-order case.

The key observation is that conditioned on the arrival time u of the typical vertex
o = (0, u), the in-degree is Poisson distributed. Indeed, by the restriction theorem, the
in-neighbors form a Poisson point process for fixed u [66, Theorem 5.2].
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Proof of the upper bound for the in-degree. First, note that if µ(u) ⩽ k/2—where µ(u)
is the expected in-degree of the typical vertex introduced in (B.2)—, then by the
Poisson concentration inequality, the probability P(Din(u) ⩾ k) vanishes exponentially
fast in k. Hence, we may assume that u ⩽ µ−1(k/2). Noting that (B.2) gives that
µ−1(k/2) ∈ O(k−1/γ) concludes the proof.

To tackle the general case, we proceed in two steps. First, we reduce to the case
where m′ = m+ 1, and then deal with this case. For the reduction step, the key idea is
that the out-degree of a given vertex is Poisson distributed with a finite parameter [40].
Hence, the number of simplices containing a given point as its youngest vertex has
rapidly decaying tail probabilities. In particular, only a few simplices contain a given
vertex as its youngest vertex, as this number is bounded from above by the out-degree
of the vertex at hand.

We would like to show that for the higher-order degree of the typical simplex ∆∗
m,

lim sup
k↑∞

1
log(k) log

(
P(degm′(∆∗

m) ⩾ k)
)
⩽ m− m+ 1

γ
. (B.3)

Hence, using Proposition B.3.1, we see that (B.3) is equivalent to

lim sup
k↑∞

1
log(k) log

(∫ 1

0
φk,m,m′(u) du

)
⩽ m− m+ 1

γ
, (B.4)

where
φk,m,m′(u) :=

∫
Sm

P
(
degm′(u,om) ⩾ k

)
gm(u,om) dom.

Proof of reduction to m′ = m+ 1. Let M(om) :=
⋂
j⩽mM(oj) denote the common

in-neighbors of o1, . . . , om. Then, the goal of this step is to reduce the problem to
deriving the asserted power-law bound for the expression P(P(M(om)) ⩾ k). First,
Lemma B.3.2 gives that φk,m,m′(u) ∈ O(u−γ). Hence, we may assume that u ⩾ k−2K ,
where K is chosen such that (1− γ)K = (m+ 1)/γ −m.

Now, we note that any m′-simplex containing the typical m-simplex consists of
the m + 1 vertices of the typical simplex and m′ −m additional Poisson points. In
particular, the number of (m′ −m)-simplices containing the typical vertex o as its
youngest vertex is at most Dout(o)m

′−m. Moreover,

P
(
Dout(o)m

′−m ⩾ k
)

= P
(
Dout(o) ⩾ k1/(m′−m)), (B.5)

which decays stretched exponentially by [40, Proposition 4.1] and Poisson concentration
[88, Lemma 1.2].

Hence, it suffices to consider the number Nm,m′ of m′ simplices incident to the
typical m-simplex with the property that the youngest vertex is one of the m′ −m
Poisson points Pi ∈ P. Again, the number of (m′ − m)-simplices having Pi as its
youngest vertex is bounded above by Dout(Pi)m

′−m. Hence, we have for any ε > 0 that

P(Nm,m′ ⩾ k) ⩽ P
( ∑
Pi∈M(om)

Dout(Pi)m
′−m ⩾ k

)
⩽ P

(
P(M(om)) ⩾ k1−ε) + P

(
max

Pi∈M(o)
Dout(Pi)m

′−m ⩾ kε
)
.
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In particular, by the Mecke formula,

P
(

max
Pi∈M(o)

Dout(Pi)m
′−m ⩾ kε

)
⩽

∫
R

∫ 1

u
P

(
Dout(x)m′−m ⩾ kε

)
1{(x, v) ∈M(o)} dv dx

= P
(
Dout(o) ⩾ kε/(m′−m))µ(u).

Now, the Poisson concentration inequality shows that the probability on the right-hand
side decays to 0 exponentially fast in k, whereas the assumption u ⩾ k−2K gives a
polynomial upper bound on µ(u). In particular, this step reduces the proof to bounding
the expression P(P(M(om)) ⩾ k1−ε).

It remains to consider m′ = m+ 1. During the proof, it is important to control
the conditional mean

µ(p, q) := |M(p, q)| := |M(p) ∩M(q)|, (B.6)

i.e., the area of the set of space-time points connecting to both p = (x, u) and q = (y, v),
where we henceforth assume that v ⩾ u.

Lemma B.3.3 (Bound on µ(p, p′)). Put s(r, u) := (βu−γ/|r|)1/(1−γ) and s∧(r, u) :=
s(r, u) ∧ 1. Then,

µ(p, q) ⩽ β
γ v

−γs∧(x− y, u)γ 1{u|x− y| ⩽ β}.

Proof. The key observation is that |x− y| ⩽ |z − x|+ |z − y| ⩽ βu−γw−(1−γ) for every
(z, w) ∈M(p, q). Hence, u ⩽ w ⩽ s∧(x− y, u). In particular,

µ(p, q) ⩽ 1{u ⩽ s∧(x− y, u)}
∫ s∧(x−y,u)

v

∣∣Iβv−γw−(1−γ)
∣∣ dw.

Hence, a computation of the integral concludes the proof.

Next, we need to bound suitable integrals on s(r, u).

Lemma B.3.4 (Integrals of s(r, u)). Let γ < 1 and 0 < η < 1− γ < ρ. Then,

(a)
∫ ∞

0
s∧(r, u)ρ dr ∈ O(u−γ).

(b)
∫ β/u

0
s∧(r, u)1−γ−η dr ∈ O(u−γ−η).

(c)
∫ β/r

0
s∧(r, u)γ du ∈ O(r−1−γ) if γ < 1/2.

Proof. Part (a). We distinguish two cases. First, note that |Iβu−γ | ∈ O(u−γ). Hence,
we may assume that y ∈ R \ Iβu−γ so that s∧(r, u) = s(r, u). Then, as asserted,∫

R\Iβu−γ

s(r, u)ρ dr ⩽ 2
∫ ∞

βuγ

(uγr
β

)−ρ/(1−γ)
dr ∈ O(u−γ).
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Part (b). We compute that∫ β/u

0
s(r, u)1−γ−η dr ⩽ 2

∫ βu−1

0

(uγr
β

)−(1−γ−η)/(1−γ)
dr ⩽ 2(1− γ)

η
u−γ−η.

Part (c). We compute that∫ β/r

0
s(r, u)γ du =

( r
β

)−γ/(1−γ) ∫ β/r

0
u−γ2/(1−γ) du.

The latter integral is of the order O(rζ) where ζ = −γ/(1− γ)+γ2/(1− γ)−1 = −1−γ,
as asserted.

Finally, we complete the proof of the upper bound in the case m′ = m+ 1.

Upper bound; m′ = m+ 1. We need to bound the tail probabilities of the Poisson
random variable D′

m(u,om) := P(M(o,om)), which has parameter µ′
m(u,om) :=

E[D′
m(u,om)]. Note that

P(D′
m(u,om) ⩾ k)

⩽ P
(
D′
m(u,om) ⩾ k, µ′

m(u,om) ⩽ k/2
)

+ 1
{
µ′
m(u,om) ⩾ k/2

}
,

where the first probability on the right vanishes exponentially by Poisson concentration.
Moreover, µ′

m(u,om) ⩽ minn⩽m µ(on−1, on), where we set µ(o−1, o0) := µ(u). Hence,
it remains to bound ∫ 1

0

∫
Sm

∏
n⩽m

1{µ(on−1, on) ⩾ k} dom du.

We start with the innermost integral. Here, by Lemma B.3.3, we deduce that if
µ(om−1, om) ⩾ k, then

vm ⩽ (β/γ)1/γk−1/γs∧(ym−1 − ym, vm−1).

Therefore, ∫
S
1{µ(om−1, om) ⩾ k} dom

⩽ (β/γ)1/γk−1/γ
∫
R
s∧(ym−1 − ym, vm−1) dym.

(B.7)

Hence, applying Lemma B.3.4 (a) shows that for some c > 0,∫ 1

0

∫
Sm

∏
n⩽m

1{µ(on−1, on) ⩾ k}dom du

⩽ ck−1/γ
∫ 1

0

∫
Sm−1

∏
n⩽m−1

1{µ(on−1, on) ⩾ k}v−γ
m−1 dom−1 du.

We now continue to compute the integral over om−1, which is the next innermost
integral. More generally, we claim that for every n ⩾ 1 and sufficiently small η > 0,
we have that ∫

S
1{µ(on−1, on) ⩾ k}v−γ−η

n don ∈ O
(
k−(1−γ−η)/γv−γ−η

n−1
)
.
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First, similarly to (B.7), for some c > 0,∫
S
1{µ(on−1, on) ⩾ k}v−γ−η

n don

⩽ ck−(1−γ−η)/γ
∫

−I
βv−1

n−1

s∧(yn−1 − yn, vn−1)1−γ−η dyn.

Therefore, by Lemma B.3.4 (b),∫
S
1{µ(on−1, on) ⩾ k}v−γ−η

n don ∈ O
(
k−(1−γ−η)/γv−γ−η

n−1
)

as asserted.

B.4 Proof of Theorem B.2.2—CLT for Betti numbers
In this section, we prove Theorem B.2.2. The idea is to proceed similarly to [48,
Theorem 5.2] and apply the general Poisson CLT by Penrose and Yukich [89, The-
orem 3.1]. While the general strategy is similar to that chosen by Hiraoka et al.
[48, Theorem 5.2], the long-range dependencies in the ADRCM require more refined
argumentation. Therefore, we provide additional details here. For a locally finite set
φ ⊆ R × (0, 1] we let β(φ) = βq(φ) denote the qth Betti number computed for the
ADRCM on φ. To state the conditions of [89, Theorem 3.1] precisely, we introduce
the add-one cost operator

δ(φ, u) := β(φ ∪ {(0, u)})− β(φ).

Now, to apply [89, Theorem 3.1], we need to verify the following two conditions.

• It holds that supn⩾1 E[δ(Pn, U)4] <∞ (moment condition).

• It holds that δ(P ∩Wn, U) converges almost surely to a finite limit as n→∞
(weak stabilization), where Wn = [−n/2, n/2]× (0, 1].

We now verify the weak stabilization and the moment condition separately. In
both cases, we follow the general strategy outlined by Hiraoka et al. [48, Theorem 5.2].
To make the presentation self-contained, we provide the most important steps of the
proof. First, we consider the moment condition.

Proof of Theorem B.2.2, moment condition. As in the proof by Hiraoka et al. [48,
Theorem 5.2], we note that δ(φ,U) is bounded above by the number of q- and (q + 1)-
simplices containing o. Thus,

E[δ(φ,U)4] =
∫ ∞

0
P(δ(φ,U) ⩾ s1/4) ds ⩽

∫ ∞

0
P(degq(o) + degq+1(o) ⩾ s1/4) ds

⩽
∫ ∞

0
d0,q(s1/4/2) + d0,q+1(s1/4/2) ds,

where the last inequality holds as if degq(o) + degq+1(o) ⩾ s1/4, then at least one of
degq(o) or degq+1(o) is larger than s1/4/2. Now, by Theorem B.2.1, both d0,q and d0,q+1
have tail index 1/γ > 4, thereby showing the finiteness of the above integral.
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Second, we consider the weak stabilization.

Proof of Theorem B.2.2, weak stabilization. For n ⩾ 1, we write

βn := dim(Zn)− dim(Bn) := dim(Z(Pn))− dim(B(Pn))

for the Betti number of the ADRCM constructed on Pn, noting that this characteristic
is the dimension difference of the corresponding cycle space Zn and boundary space Bn,
respectively. Similarly, we set

β′
n := dim(Z ′

n)− dim(B′
n) := dim(Z(Pn ∪ {o}))− dim(B(Pn ∪ {o})),

where we have now added the typical vertex, o = (0, U). Hence, it suffices to show the
weak stabilization with respect to dim(Zn) and dim(Bn) separately. We now discuss
the case of dim(Zn), noting that the arguments for dim(Bn) are very similar. To check
weak stabilization, we show that the sequence dim(Z ′

n)− dim(Zn) is increasing and
bounded.

First, to show that dim(Z ′
n) − dim(Zn) is bounded, we note that dim(Z ′

n) −
dim(Zn) ⩽ degq,n(o), where, degq,n(o) denotes the number of q-simplices in Wn

containing the typical vertex o. This is because the q-simplices constructed from
Pn ∪ {o} can be decomposed into the set of q-simplices containing the typical vertex o
and into the family of all simplices formed in Pn. We refer to the arguments by Hiraoka
et al. [48, Lemma 2.9] for the rigorous result. Now, almost surely, there exists n0 ⩾ 1
such that for n ⩾ n0, the neighbors of o do not change any further. In particular,
dim(Z ′

n)− dim(Zn) ⩽ |K0
n|.

Second, we show that dim(Z ′
n)− dim(Zn) is nondecreasing. To that end, we take

n2 ⩾ n1 and consider the canonical map

Z ′
n1,q → Z ′

n2,q/Zn2,q,

where the index q refers to the dimension of the cycle space. Then, any cycle contained
in the kernel of this map consists of simplices formed by vertices in Pn. In other words,
the kernel equals Zn1,q, which shows that the induced map

Z ′
n1,q/Zn1,q → Z ′

n2,q/Zn2,q

is injective. In particular, dim(Z ′
n1)−dim(Zn1) ⩽ dim(Z ′

n2)−dim(Zn2), as asserted.

B.5 Proof of Theorems B.2.3 and B.2.4—asymptotics of
edge counts

In this section, we prove Theorems B.2.3 and B.2.4. In both results, the idea is to
write

Sn =
∑
i⩽n

Ti :=
∑
i⩽n

∑
Pj∈P∩([i−1,i]×(0,1])

Din(Pj),

i.e., to express the edge count Sn as the sum of the in-degrees of all vertices within
[i− 1, i]× (0, 1]. For the proofs of Theorems B.2.3 and B.2.4, it will be important to
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compute variances of suitable sums of in-degrees. For ease of reference, we therefore
state such bounds as a general auxiliary result. To make this precise, we henceforth let

S(B) :=
∑
Pj∈B

Din(Pj)

denote the in-degree sum for all vertices contained in the space-time region B ⊆ S.

Lemma B.5.1 (Variance of accumulated in-degrees). Let γ ̸= 1/2, A ⊆ R and u− > 0.
Then, there exists a constant cVI > 0 such that

Var(S(A× [u−, 1]))

⩽ cVI
(
|A|(1 + u1−2γ

− ) +
∫
A2

∫ 1∧(β/|x−y|)

u−
s∧(x− y, u)γ dud(x, y)

)
.

Proof. First, we note that

Din
(
(x, u),P ∪ {(x, u), (y, v)}

)
= Din

(
(x, u),P ∪ {(x, u)}

)
+ 1{(y, v) ∈M(x, u)}.

Hence, by the Mecke formula [66, Theorem 4.4] with B := A× [u, 1],

Var(S(B)) =
∫
B
E[Din(x, u)2] d(x, u) +

∫∫
B2

Cov
(
Din(x, u), Din(y, v)

)
d(x, u) d(y, v)

+ 2
∫
B
E[Din(x, u)]

∣∣{(y, v) ∈ B : (x, u) ∈M(y, v)}
∣∣ d(x, u),

where Din(x, u) denotes the in-degree of the vertex (x, u) on the ADRCM constructed
on P ∪ {(x, u)}. Now, note that |{(y, v) ∈ B : (x, u) ∈ M(y, v)}| ∈ O(1) and that
E[Din(x, u)] ⩽ E[Din(x, u)2]. Hence, it suffices to bound the sum∫

B
E[Din(x, u)2] d(x, u) +

∫∫
B2

Cov
(
Din(x, u), Din(y, v)

)
d(x, u) d(y, v),

and we deal with the two summands separately.
We start by bounding E[Din(x, u)2]. Since Din(x, u) is a Poisson random vari-

able with mean µ(u) ∈ O(u−γ), the Poisson concentration inequality shows that
E[Din(x, u)2] ∈ O(u−2γ). Now, we note that

∫ 1
u−
u−2γ du = (1 − 2γ)−1(1 − u1−2γ

− ),
which is of order O(u1−2γ) for γ > 1/2 and of order O(1) for γ < 1/2.

To bound the covariance Cov(Din(x, u), Din(y, v)), recall from (B.6) that a
point (z, w) connects to both (x, u) and (y, v) if and only if (z, w) ∈M((x, u), (y, v)):

Cov
(
Din(x, u), Din(y, v)

)
= E

[ ∑
(z,w)∈P

1
{
(z, w) ∈M((x, u), (y, v))

}]
+

∑
(z,w),(z′,w′)∈P2

̸=

1
{
(z, w) ∈M(x, u)

}
1

{
(z′, w′) ∈M(y, v)

}
− E

[ ∑
(z,w)∈P

1
{
(z, w) ∈M(x, u)

}]
E

[ ∑
(z,w)∈P

1
{
(z, w) ∈M(y, v)

}]
,
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where the last two terms cancel by the independence property of the Poisson process.
Then, applying the Mecke formula [66, Theorem 4.4] gives

Cov
(
Din(x, u), Din(y, v)

)
=

∫
(z,w)

1{(z, w) ∈M((x, u), (y, v))} d(z, w)

= µ
(
(x, u), (y, v)

)
.

In particular, Lemma B.3.3 concludes the proof:∫∫
B2
µ

(
(x, u), (y, v)

)
d(x, u) d(y, v)

⩽ cVI

∫∫
A2

∫ 1∧(β|x−y|)

u−
s∧(x− y, u)γ dud(x, y).

First, we prove the CLT for the simplex count in the regime γ < 1/2, where we
will rely on a general CLT for associated random variables [107, Theorem 4.4.3]. Here,
we recall that the real-valued random variables T1, . . . , Tk are associated if

Cov
(
f1(T1, . . . , Tk), f2(T1, . . . , Tk)

)
⩾ 0

holds for any coordinate-wise increasing functions f1, f2 : Rk → [0,∞).

Proof of Theorem B.2.3. Since the in-degrees are an increasing function in the underly-
ing Poisson point process, we conclude from the Harris-FKG theorem [66, Theorem 20.4]
that the random variables {Ti} are associated. Hence, to apply [107, Theorem 4.4.3],
it remains to prove that Var(T1) < ∞ and

∑
k⩾2 Cov(T1, Tk) < ∞. The finiteness

of Var(T1) follows from Lemma B.5.1, so it remains to consider the covariance sum.
We prove that Cov(T1, Tk) ∈ O(k−1−γ), recalling that γ < 1/2. Proceeding similarly

to Lemma B.5.1, and setting a := |x − y|, we need to show that
∫ β/a

0 s∧(a, u)γ du ∈
O(k−1−γ). Hence, applying Lemma B.3.4 (c) concludes the proof.

Next, we prove Theorem B.2.4, i.e., the stable limit theorem for the edge count.
Before proving Theorem B.2.4, we stress that while there are several general limit results
in the literature for deriving the distributional convergence to α-stable limits [5, 27, 46],
these do not apply in our setting. More precisely, it is difficult to verify [5, Condition 3.3]
since the ADRCM is mixing but not ϕ-mixing. Second, Decreusefond et al. [27,
Theorem 7.8] gives a general convergence result of Poisson functionals to α-stable
random variables with α ∈ (0, 1). However, this corresponds to the case where γ > 1,
which is not possible due to the model constraints. While Decreusefond et al. [27,
Remark 7.9] states that in principle, the method should generalize to α ∈ (1, 2), the
ensuing computations may lead to difficulties that are challenging to tackle. Third,
Heinrich and Wolf [46] derived a general limit result for U -statistics based on i.i.d.
input. However, in our setting, we work in a growing domain, so the distributions
change after every step.

Before starting the proof of Theorem B.2.4, it will be convenient to review the
classical stable limit theorem for i.i.d. sequences from [107, Theorem 4.5.2]. To ease
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presentation, we restrict to the present setting of nonnegative random variables. More
precisely, let {Xi}i be i.i.d. nonnegative random variables such that P(Xi > x) ∼
Ax−α for some α ∈ (1, 2) and A > 0. Then, n−1/α(

∑
i⩽nXi − nE[X1]) converges in

distribution to an α-stable random variable Sα.
A key step in proving Theorem B.2.4 is a truncation argument, which we first

discuss in the i.i.d. case.

Lemma B.5.2 (Truncation in the i.i.d. case). Let {Xi}i be i.i.d. random variables
with P(Xi > x) ∼ Ax−α for some α ∈ (1, 2) and A > 0. Then, for every a < 1/α,

n−1/α
(∑
i⩽n

Xi 1{Xi ⩽ na}
)
− nE[X1 1{X1 ⩽ na}] L2

−−→ 0.

Proof. Since the random variables Xi are i.i.d., the claim follows by showing that
Var(Xi 1{Xi ⩽ na}) ∈ o(n2/α−1). Now,

E[X2
i 1{X2

i ⩽ n2a}] =
∫ n2a

0
P(X2

1 ∈ [r, n2a]) dr.

Since P(X2
1 ⩾ r) ≍ Ar−α/2 we note that

∫ n2a

1 P(X2
1 > r) dr ∈ O(n2a(1−α/2)). Hence,

observing that 2a(1− α/2) < 2/α− 1 concludes the proof.

Now, we return to the case of the edge count in the ADRCM. The idea of proof
is to decompose Sn as S⩾

n + S⩽
n , where S⩾

n and S⩽
n contain the contributions of the

young and the old vertices, respectively. More precisely, for un := n−0.9 put

S⩾
n :=

∑
Pi∈[0,n]×[un,1]

Din(Pi), and S⩽
n :=

∑
Pi∈[0,n]×(0,un]

Din(Pi).

First, we control the deviations of S⩾
n via the Chebyshev inequality.

Proposition B.5.3 (S⩾
n is negligible). It holds that n−γ(S⩾

n − E[S⩾
n ]) converges to 0

in probability.

Proof. To prove the claim, we apply Lemma B.5.1 with A = [0, n] and u− = un. In
particular, the first summand in Lemma B.5.1 is then of order O(nu1−2γ

n ). Now, since
−0.9(1− 2γ) + 1 < 2γ, we get nu1−2γ

n ∈ o(n2γ). Hence, it suffices to bound the second
summand in Lemma B.5.1. Here, we can apply Lemma B.3.4 (a) which shows that∫
S s∧(a, u)γ d(a, u) ∈ O(1), thereby concluding the proof.

Second, we approximate S⩽
n by a sum of i.i.d. Pareto random variables so that we can

apply the stable CLT by Whitt [107, Theorem 4.5.2].

Proposition B.5.4 (S⩽
n converges to a stable distribution). It holds that n−γ(S⩽

n −
E[S⩽

n ]) converges in distribution to a stable random variable.

To maintain a clear structure, we conclude the proof of Theorem B.2.4 before
establishing Proposition B.5.4.
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Proof of Theorem B.2.4. By Proposition B.5.3, n−γ(S⩾
n − E[S⩾

n ]) tends to 0 in proba-
bility, and n−γ(S⩽

n − E[S⩽
n ]) tends in distribution to a stable random variable. Hence,

also
n−γ(Sn − E[Sn]) = n−γ(S⩾

n − E[S⩾
n ]) + n−γ(S⩽

n − E[S⩽
n ])

tends in distribution to a stable random variable.

It remains to prove Proposition B.5.4. That is, the renormalized sum of the large
in-degrees converges to a stable distribution. To make this precise, we introduce
two further approximations, namely S(1)

n and S(2)
n , that we define now. In these

approximations, we replace the in-degree by its expectation, and replace the Poisson
number of points in [0, n] by a fixed number, respectively. More precisely, we set

S(1)
n :=

∑
Xi∈[0,n]
Ui⩽un

µ(Ui) and S(2)
n :=

∑
i⩽n
Ui⩽un

µ(Ui).

The key step in the proof of Proposition B.5.4 is to show that each of these expressions
is close in L1-norm.

Lemma B.5.5 (S⩽
n , S

(1)
n and S(2)

n ). It holds that E[|S⩽
n −S(1)

n |]+E[|S(1)
n −S(2)

n |] ∈ o(nγ).

Before proving Lemma B.5.5, we explain how to conclude the proof of Proposi-
tion B.5.4.

Proof of Proposition B.5.4. By Lemma B.5.5, it suffices to show that n−γ(S(2)
n −

E[S(2)
n ]) converges in distribution to a stable random variable. We note that, by

construction, the summands µ(Ui), i ⩽ n, are i.i.d. Moreover, by Lemma B.3.3,
µ(u) ∼ (β/γ)u−γ . Hence, an application of Lemma B.5.2 concludes the proof.

It remains to prove Lemma B.5.5.

Proof of Lemma B.5.5. We prove the two parts separately.

Part E[|S⩽
n − S(1)

n |]. By the Mecke formula, it suffices to show that

n

∫
(0,un]

E
[
|Din(o)− µ(u)|

]
du ∈ o(nγ).

To achieve this goal, we use the fact that the centered moment of a Poisson random
variable with parameter λ is given by 2λ⌊λ⌋+1e−λ/⌊λ⌋!. Specializing to λ = µ(u) and
applying the Stirling formula shows that E[|Din(o)− µ(u)|] ∈ O(u−0.6γ). Therefore,

n

∫
(0,un]

E[|Din(o)− µ(u)|] du ∈ O(nu1−0.6γ
n ).

Now, since 1− 0.9(1− 0.6γ) < γ, we deduce that nu1−0.6γ
n ∈ o(nγ), thereby concluding

the proof.

99



Paper B. On the topology of higher-order age-dependent random connection models

Part E[|S(1)
n − S(2)

n |]. Let N be a Poisson random variable with parameter n. Then,

E[|S(1)
n − S(2)

n |] ⩽ E
[
|N − n|

] ∫ un

0
µ(u) du.

First, the CLT for i.i.d. random variables gives that E[|N−n|] ∈ O(n1/2). Furthermore,∫ un

0
µ(u) du ∈ O(u1−γ

n ).

Therefore, E[|S(1)
n − S(2)

n |] ∈ O(n1/2u1−γ
n ). Hence, noting that 1/2 − 0.9(1 − γ) < γ

concludes the proof.

B.6 Proof of Theorem B.2.5
We deal with Parts (a) and (b) of Theorem B.2.5 separately.

Proof of Part (a)

We start with Part (a). In the assertion, we need to establish upper and lower bounds
for the probability that the typical degree in the thinned graph Gth, η is large. First,
we discuss the lower bound, as the proof allows us to ignore the distinction between
exposed and protected edges.

Proof of Theorem B.2.5 (a), lower bound. Let G′ be obtained by independent edge
thinning, where all edges of the ADRCM G are eligible to be removed. Moreover, the
retention probability of an edge (Y, V )→ o = (0, U) is set as Uη. Then, G′ ⊆ Gth, η
so that P(deg

Gth,η,in(o) ⩾ k) ⩾ P(degG′,in(o) ⩾ k).
Now, the thinning theorem for Poisson point processes implies that, conditioned

on U , the retained in-neighbors form a Poisson point process. Hence, conditioned
on U , the in-degree is a Poisson random variable with a mean Uηµ(U). Moreover,

P
(
degG′,in(o) ⩾ k

)
⩾ P(Uηµ(U) ⩾ 2k)− P

(
degG′,in(o) ⩽ k, Uηµ(U) ⩾ 2k

)
.

By Poisson concentration, the second probability on the right decays exponentially
in k, whereas (B.2) yields the asserted P(Uηµ(U) ⩾ 2k) ∈ O(k−1/(γ−η)).

Next, we prove the upper bound for the tail probabilities of the vertex degrees.
That is, an upper bound for the probability that the typical degree is considerable.
Since in the model Gth, η only the exposed edges are thinned out, this is more difficult
than the lower bound. Loosely speaking, we need to ensure that the number of
protected edges is negligible so that it does not matter whether they are considered in
the thinning. To achieve this goal, in Lemma B.6.1, we bound the power-law exponent
of the number of protected edges leading to the typical node o.

Lemma B.6.1 (Power-law for the vertex degree of protected edges). It holds that

lim
k↑∞

log(dpr,η
k )/ log(k) = 1− 2/γ.
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Before proving Lemma B.6.1, we conclude the proof of the upper bound in Theo-
rem B.2.5 (a).

Proof of Theorem B.2.5 (a), upper bound. As in the proof of the lower bound, we
let G′ be the graph obtained by independent edge thinning, where we allow all edges
to be thinned. Moreover, we let Ipr denote the number of protected edges incident
to ∆m. Then,

P
(
deg

Gth,η(o) ⩾ k
)
⩽ P

(
degG′(o) ⩾ k/2

)
+ P

(
Ipr ⩾ k/2

)
.

By Lemma B.6.1, the second probability on the right-hand side is of order at most
k1−2/γ+o(1). Hence, to conclude the proof, we need to show that the first probability is
of order at most k−1/(γ−η)+o(1). To that end, we proceed as in the proof of the lower
bound. More precisely,

P
(
degG′(o) ⩾ k

)
⩽ P

(
degG′(o) ⩾ k, Uηµ(U) ⩽ k/2

)
+ P(Uηµ(U) ⩾ k/2).

Again, by Poisson concentration, the first probability on the right-hand side decays
exponentially in k, whereas the second one is of order k−1/(η−γ)+o(1), as asserted.

Now, we prove Lemma B.6.1. The idea is to carefully distinguish between different
cases of how an edge can be protected, and then to bound each of the resulting
probabilities separately.

Proof of Lemma B.6.1. Our goal is to bound the probability that the number of
protected edges leading to o is at least k ⩾ 1. By definition, it suffices to bound
P(P(1) ⩾ k), and P(P(2) ⩾ k), where

P(1) := {(Z,W ) ∈M(o) : U ⩽W ⩽ 2U},
P(2) := {(Z,W ) ∈M(o) : (Z,W )→ (Y, V ) for some (Y, V ) ∈ P with V ⩽ 2U ⩽ 4V }.

We now deal with the two cases separately and heavily rely on the result from [40,
Proposition 4.1], that conditioned o U = u, the in-degree of o is Poisson-distributed
with mean in µ(u).

P(|P(1)| ⩾ k). We note that conditioned on U = u, the quantity |P(1)| is a Poisson
random variable with mean

∫ 2u
u |Iβu−γv−(1−γ) |dv = β(2γ − 1)/γ. Hence, P(|P(1)| ⩾ k)

decays exponentially fast in k.

P(|P(2)| ⩾ k). Note that if (Z,W )→ (0, U) and (Z,W )→ (Y, V ), then

|Y | ⩽ β|Z|/2 + β|Z − Y |/2 ⩽ βU−γW−(1−γ).

For any ε > 0, the probabilities P(P([−βU−1, βU−1] × [U, 2U ]) ⩾ kε) decay at
stretched exponential speed. Indeed, conditioned on U = u, the random variable
P([−βu−1, βu−1]× [u, 2u]) is Poisson distributed with mean 2β so that the asserted
decay is a consequence of the Poisson concentration inequality.
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Therefore, recalling (B.6), it suffices to bound∫ 1

0

∫ 1

u/2

∫ ∞

−∞
P

(
P

(
M

(
(0, u), (y, v)

))
⩾ k1−ε) dy dv du.

Again, applying the Poisson concentration inequality reduces this task to bounding∫ 1

0

∫ 1

u/2

∫ ∞

−∞
1{µ((0, u), (y, v)) ⩾ k1−ε} dy dv du. (B.8)

Since µ((0, u), (y, v)) ⩽ µ(u), we conclude that if µ((0, u), (y, v)) ⩾ k1−ε, then
u ⩽ ck−(1−ε)/γ for some c > 0. Moreover, we deduce from Lemma B.3.3 that
µ((0, u), (y, v)) ⩽ (β/γ)v−γs∧(y, u)γ . Therefore, (B.8) is bounded above by

(β/γ)1/γk−(1−ε)/γ
∫ ck−(1−ε)/γ

0

∫ ∞

−∞
s∧(y, u) dy du.

Hence, an application of Lemma B.3.4 (a) concludes the proof.

Proof of Part (b)

Next, we prove Part (b) of Theorem B.2.5. That is, the thinning operation does not
affect the power-law exponent of the edge degrees. Loosely speaking, the idea is that
even after removing all exposed edges, the protected edges are sufficient to sustain a
positive proportion of all the triangles, resulting in a high edge degree in the ADRCM.

As in the proof of (a), we show upper and lower bounds for the tail probabilities
separately. We start with the proof of the upper bound. Intuitively, it is not surprising
that removing edges reduces the edge degrees. Nevertheless, to make the presentation
self-contained, we give a rigorous proof.

Proof of Part (b) of Theorem B.2.5, upper bound. The key idea is to use the Palm
representation of the typical edge degree. More precisely,

d1,k = P
(
deg2(∆1) ⩾ k

)
= 1
λ2

E
[ ∑

(X,U),(Y,V )∈P
(Y,V )→(X,U)

1{X ∈ [0, 1]}1{deg2
(
(X,U), (Y, V )

)
⩾ k}

]
,

where λ2 > 0 denotes the edge intensity of G. Similarly, by writing →η to indicate a
directed edge in the graph Gth, η, we get that

dth,η
1,k = 1

λ
(η)
2

E
[ ∑

(X,U),(Y,V )∈P
(Y,V )→η(X,U)

1{X ∈ [0, 1]}1{degG
(
(X,U), (Y, V )

)
⩾ k}

]
,

where λ(η)
2 is the edge intensity of the thinned graph. Now, noting that Gth, η is a sub-

graph of G implies that dth,η
1,k λ

(η)
2 ⩽ d1,kλ2. In particular, lim supk↑∞ log(dth,η

1,k )/ log(k)
⩽ 1− 2/γ, as asserted.
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The lower bound is more delicate since we need to show that triangles formed by
the protected edges are sufficient to sustain the original edge degree even after the
thinning. By monotonicity, it suffices to establish the asserted lower bound for the
graph G′′ := G(∞), i.e., the graph where only the protected edges are retained.

Proof of Part (b) of Theorem B.2.5, lower bound. As a preliminary observation, we
note that a directed edge of the form (Y, V )→ (X,U) with V ⩽ 2U is never exposed.
Hence, as in the nonthinned case in Theorem B.2.1, we need to derive a lower bound
for the expression ∫ 1

0

∫ 2u

u

∫ ∞

−∞
T (u, v, y) dy dv du,

where T (u, v, y) := P(deg2((y, v), (o, u)) ⩾ k). To achieve this goal, we derive a lower
bound for T (u, v, y) when (u, v, y) is in the domain

Bk := [(β/(64k))1/γ , (β/(32k))1/γ ]× [(β/(32k))1/γ , (β/(16k))1/γ ]× [0, 8k].

First, note that (y, v)→ (0, u) for every (u, v, y) ∈ Bk as (β/2)u−γv−(1−γ) ⩾ 16k ⩾ y.
Since |Bk| ∈ O(k1−2/γ), it therefore suffices to show that T (u, v, y) is uniformly
bounded away from 0 for (u, v, y) ∈ Bk.

To achieve this goal, we first note that any point (z, w) ∈ Ck := [0, 8k]× [3/4, 1]
connects to both (o, u) and (y, v). Indeed,

|z − 0| ⩽ 8k ⩽ (β/2)((β/(32k))1/γ)−γ and |z − y| ⩽ 8k ⩽ (β/2)((β/(16k))1/γ)−γ .

Noting that v ⩽ 2u implies that both edges are protected and therefore also exist
in Gth, η. Now, we conclude since the Poisson concentration inequality implies that
P(P(Ck) ⩾ k)→ 1 as k →∞.

B.7 Simulation study
This section serves as a bridge between the theory and its applications to real-world
data. Specifically, we study how well the methods and limit theorems derived for the
ADRCM apply to finite networks. Our Monte Carlo approach involves simulating
multiple networks with identical model parameters. Subsequently, we calculate various
network properties and subject them to statistical analysis, often entailing parameter
estimation for theoretical probability distributions. Relying on Palm calculus, we also
explore the simulation of typical simplices in infinite networks to examine fluctuations
of different quantities around the limit, devoid of finite-size effects.

To ensure efficiency, performance-critical parts of our simulation software—such as
network generation and the computation of quantities of large networks—are imple-
mented in C++. For topological data analysis, we use the GUDHI C++ library [15],
which provides robust tools for the calculation of Betti numbers. These C++ algo-
rithms are exposed to Python using pybind11 [60]. Data processing and statistical
analysis are performed in Python using packages such as NumPy [45], SciPy [105], and
NetworkX [44]. Finally, all visualizations in the paper were created using the LaTeX
package TikZ and the Python package Matplotlib [54].
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Simulation methods

Simulating finite networks. To simulate a finite network, we follow a step-by-step
process as outlined below.

(1) We begin by fixing the network size, setting the volume V of the sampling window
equal to the expected number of vertices in the network. The vertex number N
is drawn from a Poisson distribution with parameter V . This step determines
the actual vertex number in the network.

(2) Next, we generate the birth times of the N vertices. Conditioned on the vertex
number, the birth times are uniformly distributed. Thus, the birth times are
generated by drawing N i.i.d. uniformly distributed random variables from the
interval (0, 1]. For each vertex, its position is also generated independently
and uniformly across the entire sampling window. This process corresponds to
sampling the spatial Poisson point process conditioned on the point count.

(3) Connections between vertices are created based on the following condition. For
every pair of vertices (x, u) and (y, v), where u ⩽ v, a connection is formed if the
distance between the vertices satisfies |x − y| ⩽ 1

2βu
−γv−(1−γ). This criterion

governs the establishment of connections in the network.

(4) Finally, the generated binary network is expanded to a clique complex. This
simplicial complex enables topological analysis and the examination of higher-
order network properties.

Figure B.2 shows the largest component of a generated network of size 1 000 000
with γ = 0.7.

Simulating Palm distributions. To avoid the influence of finite-size effects and
simulate typical simplices in infinite networks, we use Palm calculus. The main idea is
to focus only on the immediate neighborhood of a typical vertex placed at the origin,
thereby eliminating the presence of finite-size effects for the central vertex. In this
neighborhood, other vertices can form connections with the central vertex and with

Figure B.2: The largest component of a network sample generated by the
ADRCM
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each other as well. Any vertex that cannot form a connection with the vertex at the
origin is not considered. The simulation of a single network is visualized in Figure B.3.

(1) Typical vertex. We begin by randomly placing a vertex (0, u) at the origin of
the sampling window with a uniformly distributed birth time u.

(2) Simulation of older vertices. We create older vertices to which the vertex
(0, u) connects by simulating a homogeneous Poisson point process in the red
shaded area. The number of older vertices in the red area born up to time v0 ⩽ u
is Poisson distributed with parameter∫ v0

0
|Iβv−γu−(1−γ) | dv = β

1− γ u
−(1−γ)v1−γ

0 .

To generate the birth times {vi} of the points, we simulate a homogeneous Poisson
point process {wi} in the domain (0, u1−γ ] with intensity βu−(1−γ)/(1− γ). The
cardinality of {wi} will have the same distribution as the point count in the red
area. We then transform {wi} to obtain the set of birth times: {vi} = {w1/(1−γ)

i }.
The transformation ensures that the birth times {vi} have the required density.
The positions yi of the vertices are chosen uniformly in the respective domain
[−1

2βv
−γ
i u−(1−γ), 1

2βv
−γ
i u−(1−γ)].

(3) Simulation of younger vertices. Simulation of the younger neighbors of the
typical vertex is similar. The number of younger vertices in the green area born
up to time v0 ⩾ u is again Poisson distributed with parameter∫ v0

u
|Iβv−γu−(1−γ) |dv = β

γ

(
u−γvγ0 − 1

)
.

To generate the birth times {vi} using a homogeneous Poisson point process
{wi} in the domain [uγ , 1] with intensity βu−γ/γ, which means that the number
of elements in {wi} will have the same distribution as the number of younger
vertices connecting to the typical vertex. Then, we transform {wi} as before

|y| ⩽ 1
2βv

−γu−(1−γ)
|y| ⩽ 1

2βu
−γv−(1−γ)

older neighbors

younger neighbors

0

(0,u)

1

position (y)

time (v)

Figure B.3: Simulation of the Palm distribution. A typical vertex is placed at
the origin with fixed birth time u. The typical vertex connects to older vertices
in the red shaded area, whereas younger vertices connect to the typical vertex in
the green shaded area of the graph.
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to get the birth times {vi} = {w1/γ
i }. The positions yi are chosen uniformly in

[−1
2βu

−γv−(1−γ)
i , 1

2βu
−γv−(1−γ)

i ].

(4) Clique complex. As before, the generated simple graph is expanded to a clique
complex. Note that those simplices in the clique complex are not subject to
finite-size effects, which include the central vertex (0, u) at the origin.

Higher-order degree distributions of the ADRCM

First, we demonstrate that the higher-order degree distributions converge to their
theoretical limit as the network size increases.

To estimate the parameters of power-law distributions, we face two problems. First,
the domain in which the power-law distribution holds is not identical to the entire
domain of the data. As discussed in Section B.2, the degree of a typical vertex is a
Poisson random variable whose parameter is itself a heavy-tailed random variable.
Thus, the power-law distribution will only be visible for empirical values that are larger
than a minimal value xmin, from where the influence of the Poisson distribution is
negligible. On the other hand, xmin cannot be too large since in this case the estimation
of the power-law exponent becomes too inaccurate due to the low number of values
above xmin. Considering these two effects, we conducted a pilot study and found
xmin = 30 to be a suitable compromise. We estimated the exponent a of the power-law
distributions via maximum likelihood [23]. In our setting, this means that

â = 1 + n
[∑
i⩽n

log
( xi
xmin − 1/2

)]−1
,

where the index i goes over the data points xi ⩾ xmin. We fixed the network size
to 100 000 and set β = 1. For several choices of the parameter γ, we estimated the
power-law exponent â for each candidate xmin using the maximum likelihood method.
We found that the inferred γ values computed from the exponents â were close to
theoretical values when xmin ⩾ 30. The vertex, edge, and triangle degree distributions
of a generated network sample with a network size of 100 000 and γ = 0.7 can be seen
in Figure B.4, which illustrates the challenges in estimating power-law exponents for
degree distributions. In the small-degree range, the power-law tail of the distribution
is hidden due to the Poisson distribution. However, as the degrees exceed ∼ 30, the
power-law tail is apparent.

In Theorem B.2.1, we demonstrated that both the ordinary and the higher-order
degree distributions follow a power-law tail. However, this result is rigorously estab-
lished only for infinitely large networks. To apply this theorem to real datasets of
finite size, it is essential to investigate the extent to which these findings hold for finite
networks.

To address this, we conducted Monte Carlo simulations for finite network sizes.
For each network size, we generated 100 networks with a parameter γ = 0.7. The
power-law distribution was then fitted to their degree distributions using the described
method. This process yielded 100 exponents for the vertex, edge, and triangle de-
gree distributions. Given that the parameters of the underlying ADRCM remained
constant, this set of exponents provided a basis for statistical analysis. By repeating
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100 101 102 103

Vertex degree

100 101 102 103

Edge degree

100 101 102 103

Triangle degree

Figure B.4: Degree distributions of the ADRCM

this procedure for networks of varying size, we assessed the convergence of degree
distribution exponents to the theoretical limit established in Theorem B.2.1.

Additionally, we examined the simulation of Palm distributions using the same
approach. For this case, 100 000 infinite networks were simulated to fit the degree
distribution exponents, equivalent to sampling 100 000 typical vertices. The edges and
triangles considered in the simulation of the Palm distribution were those involving a
special vertex placed at the origin.

The results of the simulations are depicted in Figure B.5, presenting three sets
of boxplots summarizing the distribution of the fitted exponents. The three figures
visually illustrate the convergence of fitted exponents towards the theoretical limit,
indicated by a red horizontal line. From the observed results, the following conclusions
can be drawn.
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10

network size

Triangle degree

Figure B.5: Degree distribution exponents

• As the network size increases, the fluctuation of fitted exponents decreases.
Smaller networks (with fewer than 1000 vertices) exhibit significant fluctuations,
while larger networks (with over 10 000 vertices) tend to approach the theoretical
limit more closely. Infinite networks display the least fluctuations.

• For a given network size, higher dimensions lead to larger fluctuations in the
fitted exponents. This suggests that considering higher dimensions introduces
more variability in estimating the exponents of degree distributions.
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• Fitted exponents for finite networks tend to be higher than the theoretical
values, indicating a bias in the estimation process. This bias is attributed to
the constraint on the maximum degree in each dimension due to the finite size,
resulting in the truncation of the degree distribution tails. For small degrees, such
truncation is absent. These effects lead to higher degree distribution exponents.
The negligible bias observed in the distribution of exponents for infinite networks
supports this explanation.

Edge count of the ADRCM

In Theorem B.2.3, we demonstrated that the edge count in large networks follows a
normal distribution if γ < 0.5. Conversely, Theorem B.2.4 established that the edge
count distribution can be described by a stable distribution if γ > 0.5. To validate
these claims in finite networks, we analyzed the edge count distribution in networks
containing 100 000 vertices.

For each of the three selected values of the parameter γ (0.25, 0.50, and 0.60), we
simulated 1000 networks with β = 1. Then, we examined the distributions of the edge
counts for each of the three cases by fitting both a normal and a stable distribution to
the empirical values.

To fit a normal distribution, we estimated the expectation as the sample mean and
the variance as the sample variance. When fitting the stable distribution, we utilized
the insights from Theorem B.2.4 to set the α and β parameters directly: α = 1/γ (if
γ < 0.5, otherwise α = 2) and β = 1. The location and scale parameters needed to be
estimated from the empirical distribution. For this purpose, we employed maximum
likelihood estimation [77].

Figure B.6 visually represents the results of our analysis, showing the distributions
of the edge counts for each of the three cases: γ = 0.25, γ = 0.50, and γ = 0.60.
The subfigures in Figure B.6 provide a comprehensive view of the empirical and
fitted distributions of the edge counts, along with Q-Q (Quantile-Quantile) plots for
comparing the empirical and fitted distributions. The top row displays the empirical
and fitted distributions, while the second and third rows present the Q-Q plots for the
fitted normal distributions and the fitted stable distributions.

When γ = 0.25, the distribution of edge counts appears symmetric, and the fitted
normal distribution closely aligns with the empirical data. However, for γ = 0.6, a fat
right tail is clearly visible in the empirical distribution. This heavy-tailed behavior
is not adequately captured by the fitted normal distribution, as evidenced by the
deviation from the diagonal line in the Q-Q plot for the normal distribution. In
contrast, the stable distribution provides a better fit, aligning well with the data points
in the Q-Q plot. Interestingly, for γ = 0.5, the normal distribution does not describe
the data as effectively as it does for γ = 0.25. We offer two potential reasons for this
observation.

• The finite size of the network: In this case, a few high-degree vertices may
contribute significantly to the total edge count. However, for a sufficiently large
network, these contributions would be spread among many such vertices, leading
to a more normal-like distribution.
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Figure B.6: Distribution of the edge count for different γ parameters

• The boundary case of γ = 0.5: At this value, the degree distributions have
an infinite variance, which can affect the distribution characteristics and may
not be accurately captured by a normal distribution.

Supporting the validity of Theorem B.2.4, the above observations suggest that the
normal distribution appears to be a reasonably good fit when γ < 0.5, but the stable
distribution explains the data more accurately if γ > 0.5.

Betti numbers of the ADRCM

To establish the validity of Theorem B.2.2 for finite networks, we conducted simulations
on finite networks containing 100 000 vertices. In this case, due to the computational
costs of computing Betti numbers, we performed 100 simulations for each of the three
different values of the parameter γ: 0.25, 0.50, and 0.67.

For values of γ = 0.25, aligning with the findings of Theorem B.2.2, we approximated
the empirical values of the first Betti numbers with a normal distribution. For values
of γ = 0.6, we observed the distribution of the Betti numbers and conjectured that
they follow a stable distribution with stability parameter α = 1/γ. We posit this
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based on the expectation that the infinite variance of the simplex count leads to a
corresponding infinite variance of the Betti numbers.

In all cases, the parameter β of the stable distribution remained constant at −1.
As in Section B.7, we estimated the remaining parameters of the fitted distributions
via maximum likelihood. The results are visualized in Figure B.7.

From the Q-Q plots, it is evident that the fitted normal distribution provides a
satisfactory approximation to the distribution of the Betti numbers for the simulations
with γ = 0.25 and γ = 0.50. The points on the Q-Q plots are closely aligned with the
diagonal line, indicating a good fit.

However, for γ = 0.67, the distribution displays a heavy left tail, which is clearly
visible both from the histogram and the Q-Q plot against the normal distribution:
the points on the Q-Q plot significantly deviate from the diagonal line in the lower
quantiles. The shallow slope of the points in the central section suggests that the
standard deviation is not accurately captured by the normal distribution, which is also
an artifact of the heavy left tail. In contrast, the stable distribution fits the histogram
more accurately, as visualized in the Q-Q plot shown in the bottom right part of
Figure B.7. We can also see that the left tail is not entirely accurate in the stable
distribution case. This is explained by two effects:

• the simulation number is low, thus there are not enough values in the left tail to
precisely estimate the distribution;

• the minimum value in the distribution is 0, suggesting the presence of finite-size
effects.

All in all, the points on the Q-Q plot against the stable distribution follow more closely
the diagonal line both in the central region and in the left tail of the distribution,
reinforcing our earlier conjecture about the stable distribution of Betti numbers for
γ > 0.5.

B.8 Analysis of collaboration networks
In this section, we analyze four datasets collected from arXiv to showcase the appli-
cations of our results and to motivate our model extensions further. As higher-order
relationships naturally emerge in the context of scientific collaborations, we chose to
analyze a publicly available dataset of scientific papers. The authors of the papers
are represented as vertices in a simplicial complex, and each paper corresponds to a
higher-order interaction of the authors.

Patania et al. [83] also investigates higher-order collaboration networks on the
arXiv data and extends the concept of triadic closure to higher dimensions. However,
their analysis was purely empirical in nature and did not consider the question of using
a stochastic higher-order network model. In contrast, we compare the arXiv dataset
with the ADRCM, and also perform hypothesis tests. We also note that although we
consider a different time frame, the Betti numbers we found are mainly consistent
with the results published by Patania et al. [83].
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Figure B.7: Distribution of Betti-1 with different γ parameters

Datasets

We analyze all available documents uploaded to arXiv from various scientific fields.
For each document, we extracted the author names, the publication time, and its
primary category. The datasets were constructed using the primary categories of the
documents specified by the authors.

• Computer Science (cs): The computer science dataset is the largest we
analyze, with more than 400 000 authors.

• Engineering (eess): The second dataset we analyze consists of documents from
the scientific field of electrical engineering, which was built from approximately
80 000 authors.

• Mathematics (math): The mathematics dataset encompasses around 200 000
authors.

• Statistics (stat): The smallest dataset we analyze contains documents from
the field of statistics, including around 45 000 authors.

The largest components of the datasets are visualized in Figure B.8, and their most
important characteristics are summarized in Table B.1.
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cs eess math stat

Figure B.8: The largest components of the simplicial complexes built from the
datasets

As arXiv does not uniquely identify authors, we chose to use their full names as
identifiers. Although, in the case of a common full name, this method will result in
treating distinct authors as if they were the same, the effect of these identifier collisions
is significantly reduced when considering scientific fields separately.

After identifying the authors as vertices, each document is considered as a higher-
order interaction of the authors. This means that every document with n+1 authors is
represented by an n-simplex. Furthermore, as our goal is to build a simplicial complex,
every lower-dimensional face of this n-simplex is also added to the simplicial complex
to ensure that it is closed under taking subsets.

A document with n + 1 authors has
( n+1
m+1

)
m-faces, so in total

∑n
m=0

( n+1
m+1

)
=

2n+1 − 1 number of simplices needs to be considered. This poses a twofold practical
implementation challenge.

(1) Due to computational reasons, we must limit the maximum dimension of the
simplicial complex.

(2) The more authors a document has, the higher its influence is on the simplicial
complex, as the number of simplices grows exponentially with the number of
authors. Carstens and Horadam [20] has also found the same problem when
analyzing collaboration networks. They tackled this problem by weighting the
simplices: they assigned greater weights to smaller simplices and to those in
which the represented collaboration occurred frequently. Although introducing
weighted simplices is possible, it is beyond the scope of our present work.

Taking into account the above aspects, we consider interactions with a dimension of
at most 20 (which, including all the faces, means more than 2 million simplices in
total for a document with 21 authors). To further reduce computational complexity,
we analyzed the 2-skeleton of the collaboration network, with the triangles being the
highest-dimensional simplices.

Using this procedure, we built four separate datasets, each representing publications
of a specific scientific field published up to 4 August 2023. As we will see, the nature
of collaborations significantly differs in the four cases; thus, by considering the four
scientific fields separately, we can examine how the ADRCM model behaves for four
distinct scientific communities.
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Table B.1: Main properties of the datasets

dataset authors documents components size of largest component

cs 433244 452881 22576 370494
eess 77686 69594 5533 54147
math 198601 466428 26197 152441
stat 44380 36689 4049 32373

It is also interesting to analyze the distribution of the dimension of the higher-order
interactions, or, equivalently, of the per-document author count. Figure B.9 visualizes
the distribution of the per-document author count for each dataset, revealing the
typical size of the collaborations scientists participate in within each of the examined
scientific fields. The distributions related to the cs and eess datasets have the fattest
tails, i.e., a relatively higher number of documents have more authors. On the other
hand, the opposite is true for the math and stat datasets, where most papers tend to
have a lower number of authors. The dataset diversity across different fields opens
the opportunity to examine the comprehensive application of the theorems stated in
Section B.2.

To fit the ADRCM to the datasets, we need to set two model parameters. First, we
can use Theorem B.2.1 to estimate the parameter γ that describes the datasets based
on their vertex- or higher-order degree distributions. The vertex- and edge-degree
distributions are visualized in Figure B.10.

All plots exhibit a drop in the empirical distributions at value 20. This is explained
by the exclusion of documents with more than 21 authors. For combinatorial reasons,
this discontinuity is more pronounced in the case of the edge-degree distributions.
For heavier-tailed distributions, a larger number of documents have more than 21
authors, leading to a greater drop for the cs and eess datasets. As explained at the
beginning of Section B.8, including these documents would lead to the problem of the
high influence of a few high-dimensional interactions, as described earlier.

0 5 10 15 20

100

102

104

authors per document

cs
eess
math
stat

Figure B.9: Distribution of authors per documents
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Figure B.10: Vertex-degree distributions (top) and edge-degree distributions
(bottom) of the datasets

Higher-order degree distributions

Just as in the case of the simulations, fitting the parameters of the power-law distri-
bution poses computational challenges once again. When determining the minimum
value xmin from which the power law is visible, the goal is to find a balance between
two conflicting interests.

• On the one hand, choosing a low minimum degree value would ensure enough
data points in the degree distributions so that the estimates of the exponent are
less noisy.

• On the other hand, choosing a high minimum degree value would remove the
noise from light-tailed components of the degree.

Considering both effects, we found that setting the minimum value xmin = 10 is a good
compromise for fitting the power-law distributions. We note that this choice is more
conservative than the one used in Section B.7, where we set xmin = 30. This is because
we found the datasets to be noisier than the simulated networks. Specifically, the
imperfections in the data at high degrees can significantly impact the estimation of the
power-law exponent, motivating a more conservative choice of xmin. In contrast to the
controlled setting of the simulation study in Section B.7, when working with real data,
the deviations from the power law can be far more erratic. In particular, the effects of
noise in the tail—where data points are sparse—are more pronounced. Therefore, we
gave greater weight to the second consideration and chose to use a smaller minimum
value of xmin = 10 to enlarge the number of data points used for the fitting. After
fitting the power-law distributions, we can use Theorem B.2.1 to infer the γ model
parameter based on the fitted power-law exponents.

The fitted exponents and the γ model parameters inferred from these exponents
are summarized in Table B.2.
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Table B.2: Fitted exponents of the degree
distributions and the inferred γ model parameters

dataset vertex degree edge degree

exponent inferred γ exponent inferred γ

cs −2.39 0.72 −3.76 0.53
eess −2.98 0.50 −4.14 0.48
math −2.79 0.56 −4.47 0.45
stat −2.96 0.51 −4.86 0.41

Table B.3: Mean vertex degree and β̂

dataset mean vertex degree β̂

cs 9.57 2.69
eess 7.13 3.54
math 4.58 2.02
stat 5.14 2.52

In general, the edge-degree distributions have a thinner tail compared to that
of the related vertex-degree distributions. We can see that the parameter γ differs
substantially when inferred from the vertex- and edge-degree distributions, respectively.
This observation suggests that the ADRCM with the connection kernel we apply is not
flexible enough to capture both binary and higher-order features simultaneously. We
henceforth infer γ from the vertex-degree distributions due to the following reasons.
First, they are less affected by the high-dimensional interactions: a document with n
authors contributes with n values in case of the vertex degrees, while it is represented
by

(n
2

)
values in the edge-degree distribution. Additionally, the computation of the

vertex-degree distribution only requires the consideration of pairwise relationships,
which the original ADRCM was designed to describe.

As discussed by Gracar et al. [40], the parameter β governs the asymptotic edge
density (the expected number of edges containing a vertex) of the generated networks
through the formula E[d0,1] = β/(1− γ). Thus, using the above formula, we estimate
the parameter β from the mean vertex degree of the datasets. The mean vertex degree
and the estimated parameter β̂ are shown in Table B.3.

After fitting the model parameters, we can generate synthetic networks. We
simulated a representative network for each dataset, whose largest components are
visualized in Figure B.11. When comparing the plots of the actual datasets with
those of the ADRCM, we observe that although the ADRCM is capable of generating
triangles and tetrahedra, it tends to produce globally tree-like structures.

Triangle counts

Next, we examine if the simplex counts in the ADRCM match those in the datasets.
The simplex counts of the datasets are presented in Table B.4. The number of vertices
is matched by the model on expectation, as we choose the size of the sampling window
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cs eess math stat

Figure B.11: The largest components of simulated ADRCMs with fitted param-
eters

Table B.4: Number of simplices
of different dimensions in the datasets

dataset vertices edges triangles

cs 433244 2073235 4055220
eess 77686 276947 562382
math 198601 455130 321406
stat 44380 114003 135800

Table B.5: Estimated parameters of the
stable distributions for triangle counts

dataset α̂ β̂ location scale

cs 1.39 1.0 18785263 504582
eess 1.98 1.0 1911396 38527
math 1.79 1.0 2027542 28774
stat 1.96 1.0 566665 15352

accordingly. It is also irrelevant to examine the edge count, being asymptotically fixed
through the parameter β. Consequently, the first nontrivial dimension to consider is
the triangle count.

As shown in Theorem B.2.3, the number of edges follows a stable distribution
if the model parameter γ is larger than 0.5, which is the case for our datasets. We
conjecture that the distributions of higher-dimensional simplex counts also follow a
stable distribution for γ > 0.5.

To study the distribution of the triangle counts, we simulated 100 networks with
estimated parameters β̂ and γ̂, which were determined according to the datasets.
For fitting stable distributions to the triangle counts, we use the method detailed in
Section B.7. While the parameters α and β of the stable distribution are predicted based
on our mathematical conjecture, the location and scale parameters are estimated using
the maximum likelihood method. The fitted parameters are presented in Table B.5.

In Section B.7, we empirically verified for 1-simplices the limit for the simplex-count
distribution. This was done by comparing histograms and Q-Q plots of simulated
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quantities on bounded windows with the theoretical limit. Now, we conduct a hypoth-
esis test based on the triangle counts. Our null model is the ADRCM model with
the connection kernel from Section B.2. The dataset values are marked by vertical
green dashed lines in Figure B.12. We conclude that in all cases, the ADRCM contains
substantially more triangles compared to the dataset. In particular, the null hypothesis
is rejected at the 5% level.

Betti numbers

The presence of loops is an important feature of collaboration networks, as it quantifies
their interconnectedness. In Section B.7, we provided numerical evidence for the
conjecture that the Betti numbers follow a stable distribution if γ > 0.5. On this basis,
we can conduct a similar hypothesis test as above on the first Betti numbers, using
the ADRCM as the null model. The Betti numbers of the datasets we aim to test are
presented in Table B.6.

We again simulated 100 networks using the ADRCM with the fitted model pa-
rameters. As in Section B.8, the parameters α and β of the stable distributions are
predicted by our conjecture, while the location and scale parameters are fitted via the
maximum likelihood. After fitting the stable distributions, we visualize the hypothesis
testing in Figure B.13. The parameters of the considered stable distributions are given
in Table B.7. In particular, the real datasets contain a significantly greater number
of loops than the networks generated by the ADRCM; thus, the null hypothesis is
rejected.

4 055 220 2 · 107 562 382 2 · 106 321 406 2 · 106 135 800 6 · 105

cs eess math stat

Figure B.12: Stable distribution and hypothesis testing of the triangle counts
for the datasets. The model parameters were determined based on the parameters
of the datasets. Each of the p-values is smaller than 0.0001.

Table B.6:
Betti numbers of the datasets

dataset Betti-0 Betti-1

cs 22576 168770
eess 5533 7419
math 26197 78009
stat 4049 7275

Table B.7: Parameter estimates
of the stable distributions for Betti-1

dataset α̂ β̂ location scale

cs 1.39 −1.0 37 12.83
eess 1.98 −1.0 105 9.66
math 1.79 −1.0 490 19.16
stat 1.96 −1.0 126 8.99
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Figure B.13: Hypothesis testing of Betti-1 for the datasets. Each of the p-values
is smaller than 0.0001.

As explained by Patania et al. [83], the loops in the network can be interpreted
as bridges between communities. Hence, they are important features of scientific
collaboration networks. Our analysis indicates that this community structure exhibits
a rich spatial correlation pattern, which a simple two-parameter model, such as the
ADRCM cannot fully capture.

The reason for this phenomenon is at least partly due to the chosen connection
kernel. The vertices connect to many vertices within their neighborhood with proba-
bility 1, thereby making it difficult to form loops. This suggests that the ADRCM
generates networks that appear tree-like on a global level with relatively few large
loops.

To illustrate this idea, we conducted a pilot study examining the influence of the
connection kernel on the first Betti numbers. More precisely, we can employ the more
general connection kernel where two vertices (x, u), (y, v) ∈ P with u ⩽ v connect
with probability 1/(2a) (a ⩾ 1/2), whenever |x− y| ⩽ aβu−γv−(1−γ) [40]. Note that
for a = 0.5, the connection kernel coincides with the one introduced in Section B.2.
Increasing the newly introduced model parameter a increases the distance of the
vertices in which connections can be established. On the other hand, to maintain
the expected number of connections of the vertices, it simultaneously reduces the
connection probability.

For β = 1 and γ = 0.6, we simulated six sets of 100 networks each, with a network
size of 100 000. We then gradually increased the value of the parameter a from its
default value of 0.5 and kept track of the corresponding increase in the first Betti
numbers. The results are shown in Table B.8, and we conclude that even a slight
increase of a results in a drastic growth of the first Betti numbers.

Table B.8: Influence of the profile function on Betti-1

parameter a 0.5 0.6 0.7 0.8 0.9 1.0
mean of Betti-1 170 4873 10976 17786 24914 31961
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B.9 Conclusion and outlook
To analyze higher-order network structures, we investigated the ADRCM as a clique
complex.

First, we examined how the neighborhood of simplices of different dimensions is
organized, and proved that the higher-order degree distributions have a power-law tail
in the limit for large networks. Next, we proved that in the limit for large networks,
the recentered and suitably rescaled edge count follows a normal distribution if the
model parameter γ is less than 0.5, and a stable distribution for γ > 0.5. Turning
our attention to the topological features, we proved a CLT for the Betti numbers
if γ < 0.25. Recognizing the limitations of the ADRCM model, we devised a thinning
procedure where certain types of edges are removed independently with a given thinning
probability. This allowed us to adjust the edge-degree exponents while keeping the
power-law exponent of the vertex-degree distribution intact.

To show that the above theoretical results can be applied in real-world datasets, we
examined the extent to which the theorems are valid for finite networks by simulating
several networks using identical model parameters. We found that the convergence
of specific quantities to their limiting behavior is already clearly visible in networks
of reasonable size. Furthermore, we also provided numerical evidence supporting our
conjectures regarding the stable distribution of the Betti numbers when γ > 0.5.

Finally, after showing that the theoretical results are applicable to networks of finite
size, we analyzed real-world scientific collaboration networks from arXiv. Following an
exploratory analysis of these higher-order collaboration networks, we fitted the model
parameters to the data. Developing hypothesis tests, we showed that—although several
properties are well described by the higher-order ADRCM—topologically important
quantities, such as Betti numbers or the higher-dimensional simplex counts, are not
well explained. Looking ahead, we present several directions for future research.

One promising avenue is to introduce Dowker complexes or weighted simplices
in the network representation as proposed by Baccini et al. [2]. Similarly to binary
networks, incorporating weighted connections can describe a richer set of phenomena
with simplicial complex models. Furthermore, by carefully tuning these weights, we
can control and bound the influence of large simplices, thereby avoiding the large
effects that high-dimensional interactions introduce due to the combinatorial explosion.

Incorporating time-dependent information into the analysis of higher-order networks
would enrich our understanding of their evolution and temporal behavior. Exploring
the dynamic aspect in the arXiv datasets opens up possibilities for detecting changes
in the topology of scientific fields over time.

To gain a comprehensive understanding of network structures, we can investi-
gate different embedding spaces to examine how the embedding space influences the
topological and geometric features of the generated networks. Related to alternative
embedding spaces, investigating alternative connection kernels could also lead to novel
network models that better describe the topological properties of higher-order networks
that traditional network representations may miss.
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Abstract: In this paper, we introduce a novel model for random hypergraphs
based on weighted random connection models. In accordance with the standard
theory for hypergraphs, this model is constructed from a bipartite graph. In our
stochastic model, both vertex sets of this bipartite graph form marked Poisson
point processes, and the connection radius is inversely proportional to a product
of suitable powers of the marks. Hence, our model is a common generalization
of weighted random connection models and AB random geometric graphs. For
this hypergraph model, we investigate the limit theory of various graph-theoretic
and topological characteristics, including higher-order degree distributions, Betti
numbers of the associated Dowker complex, and simplex counts. In particular,
for the latter quantity, we identify regimes of convergence to normal and to
stable distribution depending on the heavy-tailedness of the weight distribution.
We conclude our investigation with a simulation study and an application to the
collaboration network extracted from the arXiv dataset.
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C.1. Introduction

C.1 Introduction
Since the seminal work of Barabási and Albert [3], the study of complex networks
has become a very active field of research. The primary reason for this is that many
real-world systems can be represented as networks, where nodes represent the elements
of the system and links represent the interactions between them. Examples of such
systems include the Internet, social networks, and biological networks, among others.
The study of complex networks has led to the development of new tools and methods
for analyzing and modeling the structure and dynamics of these systems.

The popularity of complex network models can be attributed to their ability to
capture the main features of real-world networks such as the presence of a scale-free
degree distribution and the small-world property, which means that the average distance
between any two nodes in the network is relatively short. Despite these promising
results, the most basic complex network models struggle to capture clustering structures
that are essential in various application domains. An elegant approach to implementing
these clustering effects involves embedding the network nodes in a suitable ambient
space, where nearby nodes have a greater tendency to be connected. This geometric
embedding, therefore, encourages the formation of clusters of nodes in a spatial vicinity.
While there are various ways to endow complex networks with a spatial structure, one
of the most elegant and mathematically tractable approaches is the age-dependent
random connection model (ADRCM) by Gracar et al. [40, 41]. These models enable
the combination of a geometric embedding with possibly heavy-tailed vertex weights,
which can create a hierarchy of hubs often observed in real data. This idea also lies at
the core of kernel-based networks as considered by Gracar et al. [42], Komjáthy and
Lodewijks [64].

Besides the spatial structure, another important advantage of the ADRCM is that
it can be used to model higher-order interactions in complex networks. For instance,
in the context of collaboration networks, scientific papers often involve more than one
or two authors, thereby illustrating the need to go beyond binary networks. One of
the challenges in investigating higher-order networks is that their topology can become
highly complex, which is why tools from the field of algebraic topology are now being
applied in the context of network analysis. For instance, Siu et al. [98] considered a
higher-order model for preferential attachment and computed the asymptotic growth
rate of the expected Betti numbers. Moreover, in an earlier work, we studied the
potential of the ADRCM as a model for arXiv collaboration data from different fields
(Paper B).

While the ADRCM is an exciting model for scale-free networks with a spatial
structure, it is too coarse to capture some key features in collaboration networks.
Indeed, from the ADRCM, we can tell whether two scientists have collaborated, but
there is no way to determine how many papers they have written together. To address
this shortcoming, we propose a spatial hypergraph structure, which we call the random
connection hypergraph model (RCHM). This hypergraph, which we think of as a
collection of subsets of vertices, will be defined through its incidence graph, i.e., the
bipartite graph whose two vertex sets are given by the set of hypergraph vertices
and relations, respectively [9]. In our setting, this bipartite graph has vertex sets
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corresponding to the authors and documents, respectively, with an edge indicating
that an author has collaborated on a document.

On the model side, the RCHM removes one of the key drawbacks of the ADRCM,
namely that the latter does not allow for capturing the number of documents that a
collection of authors has collaborated on. Despite this improvement, we show that
the RCHM remains mathematically tractable. Indeed, we can recover many of the
central higher-order characteristics considered in Paper B such as higher-order degree
distributions, simplex counts, and Betti numbers. However, the bipartite structure often
induces additional complexities that require substantially more involved mathematical
machinery compared to the ADRCM. Surprisingly, in the case of simplex counts, the
bipartite structure allows us to go further than the ADRCM.

Hence, the main contributions of this manuscript are the following:

• We introduce the RCHM, a higher-order model for bipartite networks. Note that
in the setting of traditional spatial networks, the AB random geometric graphs
are an intensively studied model [32, 56, 87, 99]. However, while bipartite AB
random geometric bipartite graphs have previously received substantial attention
in telecommunication networks, they are not suited for collaboration networks,
as they are not scale-free. To the best of our knowledge, the RCHM is the first
spatial model applicable to scale-free bipartite networks.

• While the bipartite structure of the RCHM induces additional complexities, we
show that the RCHM is mathematically tractable. In fact, surprisingly, in the
case of simplex counts, the bipartite structure allows us to go further than the
ADRCM. We note that the triangle count is of high interest in the context of
complex networks since it is intimately related to the clustering coefficients. For
both geometric and combinatorial network models, the clustering coefficient has
recently been the subject of intense research [103, 104].

• We illustrate the usefulness of our asymptotic results in finite sample sizes
through an extensive simulation study. Finally, we also compare the model to
real-world data from the arXiv network.

The rest of the manuscript is organized as follows. In Section C.2, we introduce
the RCHM and discuss its main properties. We also present the main results of the
manuscript. Sections C.3–C.8 are devoted to the proofs of the main results. Next, in
Section C.8 we illustrate the applicability of our asymptotic results in finite sample
sizes through an extensive simulation study. Finally, in Section C.9, we compare the
model to real-world data from the arXiv network.

C.2 Model and main results
We work on the space S := R × (0, 1] and interpret R as the location and (0, 1] as
the mark space. Given parameters 0 < γ, γ′ < 1, β > 0, we introduce our notion of
connectivity of elements in S. For p := (x, u) ∈ S and p′ := (z, w) ∈ S we let

F (p, p′) = F (p, p′; γ, γ′) := |x− z|uγwγ′ (C.1)
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and say that p ∈ S and p′ ∈ S are connected if

F (p, p′; γ, γ′) ⩽ β. (C.2)

We define the neighborhood of a point p ∈ S by

B(p, β) = BF (p, β) :=
{
p′ ∈ S : F (p, p′; γ, γ′) ⩽ β

}
. (C.3)

Loosely speaking, we can think of B as a nonmetric ball centered at a point p ∈ S with
radius β. For ∆ ⊆ S, we also put BF (∆, β) :=

⋂
p∈∆BF (p, β) as the joint neighborhood

of the points in ∆.
Next, we define a random bipartite graph. Let P,P ′ be independent Poisson

processes on S with intensity measures λ| · |, λ′| · |, respectively, where λ, λ′ > 0 are
fixed parameters and | · | denotes Lebesgue measure on S. Let Gbip := Gbip(P,P ′) :=
Gbip(P,P ′; γ, γ′, β) be the bipartite graph with vertex set P ∪ P ′, where there is an
edge between two points p ∈ P and p′ ∈ P ′ if and only if p and p′ are connected. Note
that given P and P ′, the number of edges in Gbip is increasing in the parameters γ, γ′

and β and that P ′ ∩BF (p, β) is the subset of points in P ′ connected to p in Gbip.
In the collaboration network example discussed in Section C.9 below, the Poisson

processes P and P ′ can be thought of as sets of authors and documents, respectively.
An edge (p, p′) can be interpreted as the relation that author p ∈ P has collaborated on
manuscript p′ ∈ P ′. Considering the product on the right-hand side of (C.1) illustrates
that Gbip is a natural bipartite extension of the age-dependent random connection
models from Gracar et al. [40, 41]. As will be made precise below, γ, γ′ < 1 determine
the power-law exponent of the degree distribution for vertices in P,P ′, respectively.
Once γ, γ′ are fixed, the parameter β > 0 can be used to tune the overall number of
expected edges in the bipartite graph Gbip.

Note that it follows from identity (C.1) that the roles of P and P ′ are symmetric
when switching the parameters γ and γ′. Hence, when in the following we describe
more elaborate graph-theoretic and topological quantities of Gbip that are defined with
reference to P, the symmetry between P and P ′ implies that our results also hold for
the corresponding quantities defined in terms of P ′, when switching the assumptions
on γ and γ′.

We now introduce the random connection hypergraph model (RCHM) Ghyp :=
Ghyp(P,P ′) through the construction known as Dowker complex [18]. We stress
here that Ghyp is a specific type of hypergraph, namely, a simplicial complex. In the
following, we rely on this structure as a simplicial complex to investigate Betti numbers.
More precisely, the set of hyperedges Σm of Ghyp of cardinality m+ 1 is given by

Σm :=
{
∆m ⊆ P : #(∆m) = m+ 1,P ′ ∩BF (∆m, β) ̸= ∅

}
, (C.4)

where #( · ) denotes the cardinality of a set.
Following the terminology in topological data analysis, we also refer to the elements

of Σm as m-simplices. If there is a unique vertex of an m-simplex ∆m with the lowest
mark, then we define c(∆m) ∈ R as the location coordinate of this vertex. Otherwise,
let c(∆m) be the location of the left-most vertex among all vertices with minimal
mark. Although not explicitly stated, the set of m-simplices Σm depends on the point
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process P ′. In our interpretation, m+ 1 authors form an m-simplex if and only if they
have coauthored at least one common paper.

In classical binary networks, the degree distribution of a typical vertex is of central
importance. Due to the translation-invariance of the edge rule (C.2), such a vertex
can be chosen to be of the form o = (0, U) with U uniform in (0, 1]. For higher-order
networks, it is essential to go beyond single vertices and describe properties of typical
m-simplices. However, rigorously defining the notion of a typical simplex is a far more
involved process. To address this problem, we will rely on the established theory of
Palm calculus as explained in [66, Chapter 9]. As a first step, we need to establish
that the m-simplex intensity is finite. Given a subset A of R, we denote the subset of
m-simplices centered in A by

ΣA
m :=

{
∆m ∈ Σm : c(∆m) ∈ A

}
.

Proposition C.2.1 (Finiteness of the m-simplex-intensity). Let P and P ′ be indepen-
dent Poisson point processes on S, let A ⊆ R be a Borel set with Lebesgue measure one.
Given m ⩾ 0, γ < 1, γ′ < 1/(m+1) and β > 0, the m-simplex intensity λm := E[#ΣA

m]
is a nonzero finite value not depending on the choice of A.

Now, we define the distribution of the typical m-simplex ∆∗
m. To do so, we first

introduce the following notations. More precisely, f denotes an arbitrary nonnegative
measurable functional that may depend on a considered m-simplex as well as on the
point processes P and P ′. Then, we define the distribution of the typical m-simplex as

E
[
f(∆∗

m,P,P ′)
]

= 1
λm

E
[ ∑

∆m∈ΣA
m

f
(
∆m − c(∆m),P − c(∆m),P ′ − c(∆m)

)]
(C.5)

where A ⊆ R is an arbitrary Borel set with |A| = 1 and for a set R ⊆ S and x ∈ R, we
write R− x := {(y − x, u) : (y, u) ∈ R}. Note that for translation-invariant f , we can
replace f(∆m − c(∆m),P − c(∆m),P ′ − c(∆m)) by f(∆m,P,P ′). Note also that if f
is bounded, Proposition C.2.1 shows that the expectation (C.5) is well-defined.

Now we can derive an integral representation of the Palm distribution. We write
pm := (p1, . . . , pm) for an m-tuple of points, and for u ∈ (0, 1], we introduce the
notations pm(u) := ((0, u), p1, . . . , pm) and −→p m(u) := {(0, u), p1, . . . , pm} for the tuple
and corresponding set, respectively.

Proposition C.2.2 (Distribution of the typical m-simplex). Let m ⩾ 0, γ < 1,
γ′ < 1/(m + 1), and let f : (R × (0, 1])m+1 × Nloc × Nloc → R+ be an arbitrary
nonnegative measurable functional depending on an m-simplex as well as on the point
processes P and P ′. Then,

E
[
f(∆∗

m,P,P ′)
]

= λm+1

λm(m+ 1)!

∫
(0,1]×Sm

E
[
f(−→p m(u),P ∪ −→p m(u),P ′)1{−→p m(u) ∈ Σm}

]
d(u,pm).

Here, if −→p m(u) does not consist of precisely m+ 1 elements, then we let f(−→p m(u),P ∪
−→p m(u),P ′) := 0.
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As a first application of the Palm distribution, we show that the higher-order
degree distributions are scale-free. In classical binary networks, the degree of a vertex
equals the number of edges it is incident to. For instance, in the bipartite graph Gbip,
the degree of an author-vertex equals the number of papers this author has written.
Hence, similarly, for an (m+ 1)-element subset of authors, we define its higher-order
degree as the number of papers this subset has collaborated on. With Fin(P) denoting
the family of finite subsets of P , we define the bipartite graph with vertex sets Fin(P)
and P ′, and there is an edge between a simplex ∆ ∈ Fin(P) and p′ ∈ P ′ if and only if
maxp∈∆ F (p, p′; γ, γ′) ⩽ β. The degree deg(∆) of a simplex ∆ is then the number of
points in P ′ to which all points in ∆ are connected to:

deg(∆) := P ′(BF (∆, β)) := #(P ′ ∩BF (∆, β)).

Note that deg(∆) depends in fact on Gbip and not only on Ghyp. In the context of
the Dowker complex, deg(∆) can also be interpreted as the number of witnesses for
the m-simplex ∆. We now show that the typical higher-order degrees are scale-free,
characterized by a power-law distribution. In particular, for m = 0, we recover the
classical degree distribution of the authors.

Theorem C.2.3 (Scale-freeness of higher-order degrees). Let m ⩾ 0, γ < 1, γ′ <
1/(m+ 1). Then,

lim
k↑∞

log
(
P

(
deg(∆∗

m) ⩾ k
))

log(k) = m− m+ 1
γ

.

We note that given a subset σ of P and a subset τ of P ′, one can say that (σ, τ)
forms a biclique in the bipartite graph Gbip if every P-vertex in σ is connected to every
P ′-vertex in τ and vice versa. Then, the degree of σ is the number of bicliques of the
form (σ, τ) where τ is a set of cardinality exactly one.

From a topological perspective, we note that Theorem C.2.3 is loosely related to the
multicover bifiltration. Here, considering a union of balls, a point is k-covered if it is
contained in at least k of the balls. Similarly, in Theorem C.2.3 we have deg(∆∗

m) ⩾ k
if there are at least k points in the set BF (∆m, β).

One of the key advantages of a stochastic network model is that, when working
with data, we can statistically test whether the model is a good fit for the considered
data. To carry out this approach rigorously, we aim to use test statistics that reflect
the key topological properties of the Dowker complex associated with Ghyp.

This opens the door towards considering invariants from topological data analysis,
such as the Betti numbers. Thus, we start by establishing the asymptotic normality of
the Betti numbers in the regime γ < 1/4 in the window Sn := [0, n]× (0, 1]. To make
this precise, fix m ⩾ 0 and let β(n)

m denote the mth Betti number of Ghyp(P∩Sn,P ′∩Sn).
Moreover, let N (0, σ2) denote the normal distribution with mean 0 and variance σ2.

Theorem C.2.4 (Asymptotic normality of Betti numbers). Let m ⩾ 0. Let γ < 1/4
and γ′ < 1/(4(m+ 1)). Then, in distribution,

n−1/2(
β(n)
m − E

[
β(n)
m

]) d−−−→
n↑∞

N (0, σ2) for some σ2 ⩾ 0.
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Note that instead of letting n→∞, one could alternatively let λ, λ′, and β tend
to infinity.

Note also that by the Dowker duality theorem [18], β(n)
m coincides with the Betti

number that is obtained from the dual Dowker complex, where the roles of P and P ′

are reversed.
While the asymptotic normality of test statistics is highly convenient in applied

statistics, we stress that Theorem C.2.4 requires that γ < 1/4. Taking into account
Theorem C.2.3 for m = 0, we see that this means that the typical degree distribution
has a finite fourth moment. However, when considering complex networks, we often
encounter the situation where even the variance is infinite. Hence, it is no longer
reasonable to expect a normal distribution in the limit, since the latter exhibits light
tails. In analogy to the classical setting of sums of independent heavy-tailed random
variables, we expect that the suitably recentered and rescaled distribution converges
to a stable distribution.

However, since the Betti numbers are a highly refined topological quantity, giving
a rigorous proof of the stable limit convergence in the delicate heavy-tailed setting is
difficult. We also note that while there is an ample variety of asymptotically normal
test statistics for spatial network models [48, 89], the stable setting has been considered
so far only in selected isolated cases [27].

While establishing a stable limit for the Betti numbers seems to be out of reach
for the moment, similarly to Paper B, we can prove a stable limit for a much simpler
test statistic, namely the edge count

Sn :=
∑

Pi∈P∩Sn

deg(Pi),

where we recall that deg(Pi) denotes the degree of a point Pi in the bipartite graph Gbip.

Theorem C.2.5 (Normal and stable limits of edge counts). Let γ′ < 1/3. Then, the
following distributional limits hold as n→∞.

(a) Let γ ∈ (0, 1/2). Then, n−1/2(Sn − E[Sn])
d
−−−→
n↑∞

N (0, σ2) for some σ2 > 0.

(b) Let γ ∈ (1/2, 1). Then, n−γ(Sn − E[Sn])
d
−−−→
n↑∞

Sγ−1, where Sγ−1 is a γ−1-stable
random variable.

While Theorem C.2.5 establishes rigorously the desired normal and stable limits
in the asserted regimes, it is difficult to apply to hypothesis tests in an actual data
analysis. This is because the parameter β is typically tuned such that the expected
number of edges in the bipartite model matches the quantity observed in the data.

Hence, to have practically useful test statistics, we now define

Sn,m := #
{
∆m ∈ Σm : c(∆m) ∈ [0, n]

}
as the number of m-simplices centered in [0, n].

The fact that we can extend the proof of Theorem C.2.5 to the case of m-simplex
count is remarkable. Indeed, in the simpler model considered in Paper B, this functional
seemed out of reach. The explanation is that for the task of proving central and stable

128



C.3. Palm distribution

limit theorems, our bipartite model is surprisingly more accessible than the one from
Paper B. The reason is that in the present model, the crucial covariance between
simplex counts in disjoint regions becomes accessible since we can condition on the
set P ′ and then apply the formula for total covariance. These essential variance and
covariance computations are summarized in the following auxiliary result.

Theorem C.2.6 (Normal and stable limits of simplex counts). Let γ′ < 1/(2m+ 1).
Then, the following distributional limits hold as n→∞.

(a) Let γ ∈ (0, 1/2). Then, n−1/2(Sn,m − E[Sn,m])
d
−−−→
n↑∞

N (0, σ2) for some σ2 > 0.

(b) Let γ ∈ (1/2, 1). Then, n−γ(Sn,m − E[Sn,m])
d
−−−→
n↑∞

Sγ−1, where Sγ−1 is a γ−1-
stable random variable.

To relate our model to existing concepts in the literature, we note that a standard
construction exists to retrieve a hypergraph from a bipartite graph. This could also be
done in our setting with the bipartite graph Gbip. After taking closures under subsets,
we recover the hypergraph Ghyp introduced above.

In the remainder of the paper, the parameter β is held fixed. Hence, to ease
notation, in the rest of the paper, we write BF (−→p m) instead of BF (−→p m, β).

C.3 Proof of Propositions C.2.1 and C.2.2
Proof of Proposition C.2.1. As before, let A ⊆ R be an arbitrary Borel set with |A| = 1.
Furthermore, let gm(p0, . . . , pm,P ′) denote the indicator of the event that an m-tuple
of points forms an m-simplex and that the marks of p0, . . . , pm are ordered ascending.
The m-simplex intensity λm is then given by

λm = E
[ ∑

∆m∈Σm

1
{
c(∆m) ∈ A

}]
= λm+1

∫
(A×(0,1])×Sm

E
[
gm

(
(p0, p1, . . . , pm),P ′)]

d(p0,pm)

= λm+1
∫

(0,1]×Sm
E

[
gm(pm(u),P ′)

]
d(u,pm),

where we used the Mecke formula [66, Theorem 4.4] in the first step, and integrated
with respect to the location of p0 in the second step. Note that the number of points
in the common neighborhood B(−→p m(u)) of the vertices is Poisson-distributed. Hence,
by the Markov inequality, the probability that this set is nonempty is given by:

λm = λm+1

(m+ 1)!

∫ 1

0

∫
Sm

P
(
P ′(B(−→p m(u))) ⩾ 1

)
dpm du

⩽
λm+1λ′

(m+ 1)!

∫ 1

0

∫
Sm
|B(−→p m(u))| dpm du.
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The inner integral is given by∫
Sm
|B(−→p m(u))|dpm

=
∫
S
1

{
|z| ⩽ βu−γw−γ′} ∫

Sm
1

{
|z − yi| ⩽ βv−γ

i w−γ′ : 1 ⩽ i ⩽ m
}

dpm dp′.

Next, we integrate with respect to the location coordinates y := (y1, . . . , ym), the
marks v := (v1, . . . , vm) as well as z, w, u. This gives for the above∫

S
1

{
|z| ⩽ βu−γw−γ′} ∫

(0,1]m

m∏
i=1

(
2βv−γ

i w−γ′) dv dp′

=
( 2β

1− γ
)m ∫

S
1

{
|z| ⩽ βu−γw−γ′}

w−mγ′ dp′

= (2β)m+1

(1− γ)mu
−γ

∫ 1

0
w−(m+1)γ′ dw = (2β)m+1

(1− γ)m
u−γ

1− (m+ 1)γ′ ,

where we have used that γ < 1 and γ′ < 1/(m + 1). Using again that γ < 1, we
conclude that λm <∞.

Proof of Proposition C.2.2. Let A ⊆ R be an arbitrary Borel set with |A| = 1. Let the
lowest-mark P-vertex c(∆m) of a set of m+ 1 points ∆m be denoted by p0 := (x, u).
The expectation of a nonnegative functional f is given by (C.5). By another application
of the Mecke formula, and by integrating over x, we obtain

E
[
f(∆∗

m,P,P ′)
]

= λm+1

λm

∫
(0,1]×Sm

E
[
f

(−→p m(u),P ∪ −→p m(u),P ′)gm(pm(u),P ′)
]

d(u,pm),

as asserted.

C.4 Proof of Theorem C.2.3
Since the proofs of the upper and lower bounds are very different, we deal with them
in Sections C.4 and C.4, separately. We start with two lemmas that are used in both
the proof of the upper and lower bounds.

Lemma C.4.1 (Pairwise intersections). Let 0 ⩽ u ⩽ v ⩽ 1, and set o := (0, u) ∈ S and
p := (y, v) ∈ S. Then, the measure of the intersection of their neighborhood |B({o, p})|
can be upper bounded as follows:

|B({o, p})| ⩽ 2β
1− γ′ v

−γs∧(u, y)1−γ′ where s∧(u, y) :=
(
2βu−γ |y|−1)1/γ′

∧ 1.

Proof. For a point (z, w) ∈ S to be connected to both (0, u) and (y, v), it must hold
that |z| ⩽ βu−γw−γ′ and that |y− z| ⩽ βv−γw−γ′ . As u ⩽ v, we find from the triangle
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inequality that |y| ⩽ 2βu−γw−γ′ and hence w ⩽ (2βu−γ |y|−1)1/γ′ . On the other hand,
w ⩽ 1, so w ⩽ s∧(u, v) and using only the second condition above for z,

|B({o, p})| ⩽
∫ s∧(u,y)

0

∫ βv−γw−γ′

−βv−γw−γ′
dz dw

=
∫ s∧(u,y)

0
2βv−γw−γ′ dw = 2β

1− γ′ v
−γs∧(u, y)1−γ′

,

as asserted.

Lemma C.4.2 (Upper bound of
∫
F (s∧(u, y)) dy). Let ρ > γ′ and F : (0,∞)→ [0, 1]

be an integrable function. Assume that c := supx>0 x
−ρF (x) <∞. Then, for all a ⩾ 0,∫ ∞

−∞
F (s∧(u, y)) dy ⩽ 2a+ 2cγ′

ρ− γ′ (2β)ρ/γ′
a1−ρ/γ′

u−ργ/γ′
.

Proof. We use the upper bound of F and the symmetry of |y| to write∫ ∞

−∞
F (s∧(u, y)) dy ⩽ 2

∫ a

0
1 dy + 2c

∫ ∞

a
s∧(u, y)ρ dy

⩽ 2a+ 2c
(
2βu−γ)ρ/γ′

∫ ∞

a
y−ρ/γ′ dy ⩽ 2a+ 2cγ′

ρ− γ′ (2β)ρ/γ′
a1−ρ/γ′

u−ργ/γ′
,

where we have used that ρ > γ′.

Proof of the upper bound

The key idea for the proof of the upper bound is to note that if all points of ∆m have
a common neighbor in P ′, then also all pairs of P-vertices in ∆m have a common
neighbor. This observation will be used to subsequently bound the integrals in the
Palm probabilities.

Proof of the upper bound. By Proposition C.2.2 we obtain that

P(deg(∆∗
m) ⩾ k) = λm+1

λm(m+ 1)!

∫
(0,1]

∫
Sm

P(P ′(B(−→p m(u))) ⩾ k) dpm du.

Let b := λ′|B(−→p m(u))| and note that X := P ′(B(−→p m(u))) is Poisson-distributed with
parameter b. Next, we bound the probability by distinguishing whether b ⩾ k/2:

P(X ⩾ k) ⩽ 1{b ⩾ k/2}+ P(X ⩾ k)1{b < k/2}.

Our goal is to show that the second term is negligible compared to the first for large
values of k. First,

P(X ⩾ k) = P(X ⩾ 1)P(X ⩾ k)
P(X ⩾ 1) .

Let b∨ := 2 ∨ e2b. The numerator is upper bounded by (b/k)k/2 whenever k ⩾ b∨
using [86, Lemma 1.2]. If b < 1/2, the denominator can be bounded from below by
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1− exp(−b) ⩾ b/2. Otherwise, the denominator can be bounded from below by a finite
constant 1/c2. Thus, for k ⩾ b∨, we have

P(X ⩾ k)
P(X ⩾ 1) ⩽ c1

( b
k

)k/2(2
b
1

{
b <

1
2

}
+ c2 1

{
b ⩾

1
2

})
⩽ c3

( b
k

)k/2−1

for some c1, c2, c3 > 0. Considering the indicator 1{b < k/2} in the integrand, we can
conclude that ∫

(0,1]×Sm
P(X ⩾ k)1

{
b < k/2

}
d(u,pm)

⩽ c321−k/2
∫

(0,1]×Sm
P(X ⩾ 1) d(u,pm) = c42−k/2,

where c4 > 0 and in the last step we used that the integral above is finite due to
Proposition C.2.1. As shown below, the 1{b ⩾ k/2} term decays as a power law with
increasing k. Thus,

lim sup
k↑∞

log
(
P(deg(∆∗

m) ⩾ k)
)

log(k) ⩽ lim sup
k↑∞

log
(∫

(0,1]×Sm
1

{
b ⩾ k/2

}
d(u,pm)

)
log(k) .

In particular, for m = 0,∫
(0,1]

1
{
b ⩾ k/2

}
du =

∫
(0,1]

1

{
λ′

∫
R×(0,1]

1
{
|z| ⩽ βu−γw−γ′} d(z, w) ⩾ k/2

}
du

=
∫

(0,1]
1

{ 2βλ′

1− γ′u
−γ ⩾

k

2

}
du ∈ O(k−1/γ).

This concludes the proof for m = 0.
From now on, we assume m ⩾ 1. Our goal is to upper bound the expression

lim sup
k↑∞

log
(
P(deg(∆∗

m) ⩾ k)
)

log(k) ⩽ lim sup
k↑∞

( 1
log(k) log

(∫
(0,1]×Sm

1

{
b ⩾ k

2

}
d(u,p)

))
.

We assume that the points pi are ordered in increasing order of their marks, i.e.,
u ⩽ v1 ⩽ · · · ⩽ vm. Note that

b ⩽ λ′|B(−→p 1(u))| ∧ min
i=1,...,m−1

λ′|B({pi, pi+1})|.

Due to translation invariance and Lemma C.4.1 we find that for some constant c > 0,

λ′|B({pi, pi+1})| = λ′|B({(0, vi), (yi+1 − yi, vi+1)})| ⩽ cv−γ
i+1s∧(vi, yi+1 − yi)1−γ′

.

Using this upper bound,∫
(0,1]×Sm

1
{
b ⩾ k/2

}
d(u,pm)

⩽
∫

(0,1]×Sm

m−1∏
i=0

1

{
cv−γ
i+1s∧(vi, yi+1 − yi)1−γ′

⩾ k
}

d(u,pm),
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where we have set v0 := u and y0 := 0. In the indicators, we can express the upper
limit of the marks vi,∫ ck−1/γ

0

∫
Sm

m−1∏
i=0

1

{
vi+1 ⩽ cs∧(vi, yi+1 − yi)(1−γ′)/γk−1/γ

}
dpm du,

where we set the upper limit of the integral with respect to u to ck−1/γ as u ⩽ v1 ⩽
ck−1/γ . We now substitute y′

i+1 := yi+1 − yi for i = 0, . . . ,m − 1. Furthermore, let
p′
i := (y′

i, vi) denote the ith point with the new coordinates. Then, we have

∫ ck−1/γ

0

∫
Sm

m−1∏
i=0

1

{
vi+1 ⩽ cs∧(vi, y′

i+1)(1−γ′)/γk−1/γ
}

dp′
m du.

Note that the point p′
m = (y′

m, vm) only appears in one of the indicators in the product.
We integrate this indicator with respect to p′

m. Then, for large k,∫
R×(0,1]

1

{
vm ⩽ cs∧(vm−1, y

′
m)(1−γ′)/γk−1/γ

}
dp′

m

=
∫
R
ck−1/γs∧(vm−1, y

′
m)(1−γ′)/γ dy′

m ∈ O(k−1/γv−γ
m−1),

where in the first step we noted that the indicator represents an upper bound of vm
and integrated it out, and in the second step we used Lemma C.4.2 with ρ = (1−γ′)/γ
and a = u−γ . Note that the finiteness of the integral requires that γ < (1− γ′)/γ′. We
can follow the same steps for integrating out with respect to p′

m−1. The only difference
is that now a v−γ

m−1 appears in the integration, resulting in a k(1−γ)/γ factor. Then,∫
(0,1]×Sm

1
{
b ⩾ k/2

}
d(u,pm)

⩽ ck−(1+(m−2)(1−γ))/γ
∫ ck−1/γ

0

∫
R×(0,1]

1

{
cv−γ

1 s∧(u, y′
1)1−γ′

⩾ k
}
v−γ

1 dp′
1 du

⩽ ck−(1+(m−1)(1−γ))/γ
∫ ck−1/γ

0
u−γ du ∈ O(km−(m+1)/γ).

This leads to

lim
k↑∞

( 1
log(k) log

(∫
(0,1]×Sm

1
{
b ⩾ k/2

}
d(u,pm)

))
= m− m+ 1

γ
,

as asserted.

Proof of the lower bound

The idea for proving the lower bound is to construct specific configurations that lead
to higher-order degrees exceeding k. We then show that these configurations occur
with a sufficiently high probability.
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Proof of the lower bound. Let Rk := [0, k] × [0, (β/k)1/γ ] ⊆ S and note that for p :=
(y, v) ∈ Rk and p′ := (z, w) ∈ [0, k]× (0, 1], p and p′ are connected. Indeed, |y − z| ⩽
k ⩽ βu−γw−γ′ . This gives for ν(k) := λ′k − log(2) by Proposition C.2.2

P(deg(∆∗
m) ⩾ ν(k)) ⩾ λm+1

λm(m+ 1)!

∫
Rm

k

∫
[0,(β/k)1/γ ]

P
(
deg(−→p m(u)) ⩾ ν(k)

)
dudpm

⩾
λm+1(β/k)1/γ

λm(m+ 1)!

∫
Rm

k

P
(
P ′([0, k]× (0, 1]) ⩾ ν(k)

)
dpm.

As P ′([0, k]× (0, 1]) ∼ Poi(λ′k), its median can be lower bounded by ν(k) [21, Theo-
rem 2]. Thus, lower bounding the integrand, we obtain

P(deg(∆∗
m) ⩾ ν(k)) ⩾ λm+1(β/k)1/γ

2λm(m+ 1)! |Rk|
m = λm+1β(m+1)/γ

2λm(m+ 1)! k
m−(m+1)/γ .

Hence,

lim inf
k↑∞

log
(
P(deg(∆∗

m) ⩾ k)
)

log(k) = lim inf
k↑∞

log
(
P(deg(∆∗

m) ⩾ ν(k))
)

log(k) ⩾ m− m+ 1
γ

as asserted.

C.5 Proof of Theorem C.2.4
The proof of the CLT for the Betti numbers relies on the general Poisson CLT
by Penrose and Yukich [89, Theorem 3.1]. This result requires verification of two
conditions: a stabilization condition and a moment condition.

The stabilization condition follows from an adaptation of the arguments provided in
Paper B and [48]. However, the moment condition is more involved than in Paper B or
in [48]. This is because, in contrast to Paper B and [48], the existence of an m-simplex
can no longer be determined just from the knowledge of the positions of the m + 1
P-vertices. Indeed, the existence fundamentally involves the second Poisson process P ′.

Let β(P,P ′) := βn,m(P,P ′) be the mth Betti number of Ghyp
n (P ∩ Sn,P ′ ∩ Sn).

We introduce the two special points o := (0, U), o′ := (0,W ). Furthermore, let
Ghyp
n,o := Ghyp((P ∪ {o}) ∩ Sn,P ′ ∩ Sn) denote the hypergraph in the window Sn with

the additional P-vertex o, and similarly, let Ghyp
n,o′(P ∩ Sn, (P ′ ∪ {o′}) ∩ Sn) denote the

hypergraph in the window Sn with the additional P ′-vertex o′. Using these notations,
the add-one cost operators

δ(Ghyp
n , o) := β(Ghyp

n,o )− β(Ghyp
n )

δ(Ghyp
n , o′) := β(Ghyp

n,o′)− β(Ghyp
n ).
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To apply [89, Theorem 3.1], we need to verify the following conditions:

• moment condition: supn⩾1 E[δ(Ghyp
n , o)4] <∞ and

supn⩾1 E[δ(Ghyp
n , o′)4] <∞

• weak stabilization: limn↑∞ δ(Ghyp
n , o) <∞ and limn↑∞ δ(Ghyp

n , o′) <∞

Proof of the moment condition. By Hiraoka et al. [48, Lemma 2.9] and Edelsbrunner
and Harer [35, Chapter VII], δ(Ghyp

n , o) and δ(Ghyp
n , o′) are bounded above by the

number of m- and (m+ 1)-simplices containing the additional P-vertex o = (0, U) ∈ P
or o′ = (0,W ) ∈ P ′.

We first consider the case of δ(Ghyp
n , o′). The number of new m − 1-simplices is

given as the number of m-tuples of points in the neighborhood B(o′) of the new point
(0,W ) ∈ P ′:

E
[
δ(Ghyp

n , o′)4]
⩽ E

[(P(B(o′))
m

)4]
⩽ E

[
P(B(o′))4m]

.

The number of points in the neighborhood P(B(o′)) is Poisson distributed with mean
λ|B(o′)| = (2βλ)/(1− γ)w−γ′ , as shown in Proposition C.2.1. Since the rth factorial
moment of a Poisson random variable with parameter µ > 0 equals µr, the rth moment
itself is bounded above by cM,rµ

r for some constant cM,r > 0. Noting that γ′ < 1/(4m),
we conclude that

E
[
P(B(o′))4m]

⩽ cM,4m E
[( 2β

1− γW
−γ′)4m]

⩽ c

∫ 1

0
w−4mγ′ dw <∞

for some c > 0.
Next, we show that E[δ(Ghyp

n , o)4] <∞. The number of new m-simplices are formed
by the sets of m points −→P m := {P1, . . . , Pm} ∈ Pm̸= for which a common neighbor
P ′ ∈ P ′ exists with the new P-vertex o. As this number upper bounds δ(Ghyp

n , o), we
have

E[δ(Ghyp
n , o)4] ⩽ E

[( ∑
P m∈Pm

̸=

1

{
P ′(B(

{o} ∪
−→
P m

))
⩾ 1

})4]

⩽ E
[( ∑

P ′∈P ′

(P(B(P ′))
m

)
1

{
P ′ ∈ B(o)

})4]
,

where
−→
P ′

m := {P ′
1, . . . , P

′
m}, and in the second step each term of the sum represents

the number of m-tuples of P-vertices in the neighborhood of a point P ′ ∈ P ′, and
the indicator ensures that this point is in turn connected to the new P-vertex o. We
bound the binomial coefficient by P(B(P ′))m, and expand the fourth power of the
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sum by using the multinomial theorem to obtain

E[δ(Ghyp
n , o)4]

⩽ c1 E
[∑

P ′
4∈P ′4

̸=

∏
i⩽4 P

(
B(P ′

i )
)m

1
{−→
P ′

4 ⊆ B(o)
}]

term I

+ c2 E
[∑

P ′
3∈P ′3

̸=
P

(
B(P ′

1)
)2m ∏3

i=2 P
(
B(P ′

i )
)m

1
{−→
P ′

3 ⊆ B(o)
}]

term II

+ c3 E
[∑

P ′
2∈P ′2

̸=
P

(
B(P ′

1)
)2mP

(
B(P ′

2)
)2m

1
{−→
P ′

2 ⊆ B(o)
}]

term III

+ c4 E
[∑

P ′
2∈P ′2

̸=
P

(
B(P ′

1)
)3mP

(
B(P ′

2)
)m

1
{−→
P ′

2 ⊆ B(o)
}]

term IV

+ c5 E
[∑

P ′∈P ′ P
(
B(P ′)

)4m
1

{
P ′ ∈ B(o)

}]
term V

for some c1, . . . , c5 > 0. To show the moment bound, it is enough to show that each
of the above terms is finite. We begin with using the multivariate Mecke formula for
term I:

I := c1 E
[ ∑

P ′
4∈P ′4

̸=

∏
i⩽4
P

(
B(P ′

i )
)m

1
{−→
P ′

4 ⊆ B(o)
}]

= c1

∫∫
(0,1]×S4

E
[∏
i⩽4
P

(
B(p′

i)
)m

1
{
p′
i ∈ B(o)

}]
d(u,p′

4).

Introducing the notation p′
i := (zi, wi) for the coordinates of the points p′

i, the indicator
represents an upper bound for the coordinates |zi| ⩽ βu−γw−γ′

i . Next, we use Hölder’s
inequality to upper bound the expectation of the product:

I ⩽ 24c1

∫∫
(0,1]×(0,1]4

∏
i⩽4

(∫ βu−γw−γ′
i

0
E

[
P

(
B((zi, wi))

)4m]1/4
dzi

)
d(u,w).

Hence,

I ⩽ 24c1

∫∫
(0,1]×(0,1]4

∏
i⩽4

(∫ βu−γw−γ′
i

0
cM,4m

( 2β
1− γw

−γ′

i

)m
dzi

)
d(u,w).

Note that the upper bound does not depend on the variable zi, as it is translation
invariant. Also, we can upper bound the exponential term by a sufficiently large
constant C to get

I ⩽
(C(2β)(m+1)

(1− γ)m
)4
c1

∫ 1

0
u−4γ du

∫
(0,1]4

4∏
i=1

w
−(m+1)γ′

i dw.

The integral over the wi is finite whenever γ′ < 1/(m+ 1), and the integral over u is
finite if γ < 1/4. The other terms can be bounded similarly, and we obtain a finite
bound for E[δ(Ghyp

n , o)4]. The conditions for the finiteness of the integrals are given as
follows:

• term I: γ < 1/4 and γ′ < 1/(m+ 1),

• term II: γ < 1/3 and γ′ < 1/(2m+ 1),
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• term III: γ < 1/2 and γ′ < 1/(2m+ 1),

• term IV: γ < 1/2 and γ′ < 1/(3m+ 1),

• term V: γ < 1 and γ′ < 1/(4m+ 1).

Combining these conditions, we obtain that γ < 1/4 and γ′ < 1/(4m+ 1) are sufficient
conditions for the finiteness of E[δ(Ghyp

n , o)4].

Proof of the weak stabilization. In the following, we extend the arguments from Hi-
raoka et al. [48, Proposition 5.4].

For n ⩾ 1 we write

βn := dim(Zn)− dim(Bn) := dim(Z(Ghyp
n ))− dim(B(Ghyp

n ))

for the Betti number of Ghyp
n , where Zn is the corresponding cycle space and Bn is the

boundary space.
We set for o := (0, U),

βn,o := dim(Zn,o)− dim(Bn,o) := dim(Z(Ghyp
n,o ))− dim(B(Ghyp

n,o )).

Hence, it suffices to prove the weak stabilization with respect to dim(Zn) and dim(Bn)
separately. Since the arguments are very similar, we henceforth only deal with the
case dim(Zn). We do this by showing that dim(Zn,o)− dim(Zn) is nondecreasing and
bounded in n.

For the boundedness, note that dim(Zn,o)−dim(Zn) ⩽ degm,n(o), where degm,n(o)
is the number of m-simplices in Sn containing the typical P-vertex o. This is because
the m-simplices constructed from Ghyp

n,o can be decomposed into the set of m-simplices
containing o and into the family of all m-simplices formed in Ghyp

n [see 48, Lemma 2.9].
To show that dim(Zn,o)− dim(Zn) is nondecreasing, take n1 ⩽ n2, and consider the
canonical map

Zn1,o → Zn2,o/Zn2

with kernel Zn1,o ∩ Zn2 ⊆ Zn1 . We claim that the kernel is equal to Zn1 . Let Mn and
Mn,o denote the set of m-simplices in Ghyp

n and Ghyp
n,o , respectively, and consider an

m-simplex σ ∈Mn1,o ∩Mn2 forming an m-cycle z. If σ ∈Mn1 , then both σ ∈Mn1,o

and σ ∈Mn2 . Therefore, Zn1 ⊆ Zn1,o′ ∩ Zn2 , and the induced map

Zn1,o/Zn1 → Zn2,o/Zn2

is injective. In particular, dim(Zn1,o) − dim(Zn1) ⩽ dim(Zn2,o) − dim(Zn2), which
shows the assertion.

Now, we show the weak stabilization with respect to the typical P ′-vertex o′ ∈ P ′.
As before, we write

β′
n := dim(Zn,o′)− dim(Bn,o′) := dim(Z(Ghyp

n,o′))− dim(B(Ghyp
n,o′)),

and prove weak stabilization with respect to dim(Zn).
Let Mn and Mn,o′ denote the set of m-simplices in Ghyp

n and Ghyp
n,o′ , respectively.

Following the same arguments as above, the difference dim(Zn,o′)−dim(Zn) is bounded
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from above by the number of m-simplices |Mn,o′ | − |Mn| appearing in Ghyp
n due to the

addition of the typical P ′-vertex o′:

dim(Zn,o′)− dim(Zn) ⩽ |Mn,o′ | − |Mn|.

In turn, |Mn,o′ | − |Mn| is bounded from above by the number of m-tuples of points
p ∈ P in the neighborhood P(B(o′)) of o′:

dim(Zn,o′)− dim(Zn) ⩽
(P(B(o′))

m

)
<∞,

since the neighborhood P(B(o′)) is almost surely finite.
We consider again the canonical map

Zn1,o′ → Zn2,o′/Zn2 ,

where n1 ⩽ n2. As Zn1 ⊆ Zn2 , the kernel of the map is Zn1,o′∩Zn2 . If Zn1 = Zn1,o′∩Zn2 ,
we can conclude the proof as above.

In contrast to the case above, however, dim(Zn,o′) − dim(Zn) is not necessarily
monotone, since Zn1,o′ ∩ Zn2 ≠ Zn1 , i.e., there can be cycles in the kernel that are not
in Zn1 . To see this, consider a cycle z ∈ Zn1,o′ \ Zn1 . If z contains a simplex formed
by a P ′-vertex in the increased window size n2, but not in the window size n1, then
z ∈ Zn2 \ Zn1 . Thus, z /∈ Zn1 , but is in the kernel of the map Zn1,o′ → Zn2,o′/Zn2 . To
solve this problem, we construct a random N2 such that for any two window sizes
n2 ⩾ n1 ⩾ N2 we have Zn1,o′ ∩Zn2 = Zn1 in the kernel of the map Zn1,o′ → Zn2,o′/Zn2

the sequence (dim(Zn,o′)− dim(Zn)) is monotone. Once we have shown this, we can
conclude the proof as above.

To construct N2, first observe that as P(B(o′)) is almost surely finite, there a
random N1 ⩾ 1 such that for all n ⩾ N1, the number of m-simplices |Mn,o′ | − |Mn|
is a nonincreasing sequence. As all P-vertices in the neighborhood B(o′) have finite
neighborhoods almost surely, there also exists N2 ⩾ N1 ∈ R such that for all n ⩾ N2,
the number of m-simplices |Mn,o′ |−|Mn| is a nondecreasing sequence, and thus constant
for such n. Then, we conclude the proof as above.

C.6 Proof of Theorem C.2.5
The proof idea for Theorem C.2.5 is similar to the edge-count CLTs and stable limits
obtained in Paper B. For the CLT, we use a general result on associated random
variables, whereas for the stable case, we use a truncation argument and a comparison
with the independent case. Besides some moment computations of the degree of a
typical node, the main difficulty in the proof is to approximate the random number of
nodes in the interval [0, n] by a deterministic number.

We begin by proving an auxiliary result that will be used in both the normal and
the stable cases. Recall the definition of the neighborhood B(∆) of a set of points ∆
as it was defined in (C.3). As before, for u ⩽ 1 and −→p m ⊆ P, we write B(−→p m(u)) for
the common neighborhood of {(0, u), p1, . . . , pm}.
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Lemma C.6.1 (Scaling of B(−→p m(u))). Let u ⩽ 1, m ⩾ 1, 0 < γ < 1 and 0 < γ′ <
1/(m+ 1). It holds that∫

Sm
|B(−→p m(u))| dpm = u−γ

1− (m+ 1)γ′
(2β)m+1

(1− γ)m .

Proof. We have that∫
Sm
|B(−→p m(u))| dpm =

∫∫
S×Sm

1
{
p′ ∈ B(−→p m(u))

}
dpm dp′

=
∫
S
1

{
(z, w) ∈ B(o)

}(∫
S
1

{
|z − y| ⩽ βv−γw−γ′} d(y, v)

)m
d(z, w)

=
∫
S
1

{
(z, w) ∈ B(o)

}(2βw−γ′

1− γ
)m

d(z, w)

= u−γ
∫ 1

0

(
2βw−γ′)m+1

(1− γ)m dw = u−γ

1− (m+ 1)γ′
(2β)m+1

(1− γ)m ,

where we used the notations p := (y, v) and p′ := (z, w).

Proof of the normal limit

The idea of the proof is to apply the CLT [107, Theorem 4.4.3] which holds for
stationary sequences of identically distributed associated random variables T :=
T1, T2, . . . , and requires that

∑
k⩾1 Cov(T1, Tk) < ∞. Recall that the sequence of

random variables T is associated if and only if Cov(f(T1, . . . , Tk), g(T1, . . . , Tk)) ⩾
0 for all nondecreasing functions f , g for which E[f(T1, . . . , Tk)], E[g(T1, . . . , Tk)],
E[f(T1, . . . , Tk)g(T1, . . . , Tk)] exist [36, Definition 1.1].

Proof of Theorem C.2.5 (a). Let γ < 1/2 and define for i ⩾ 1,

Ti :=
∑

Pj∈P∩([i−1,i]×(0,1])
deg(Pj).

Since the degree deg(x, u) is increasing in the Poisson process P ′, we conclude from the
Harris-FKG inequality [66, Theorem 20.4] that the sequence T1, . . . , Tk is associated.
For A ⊆ R let

S(A) :=
∑

Pj∈P∩A×(0,1]
deg(Pj).

Then, the Mecke equation gives
Var(S(A))

= E
[ ∑
Pi ̸=Pj∈P∩A

deg(Pi) deg(Pj)
]

+ E
[ ∑
Pi∈P∩A

deg(Pi)2
]
− E

[ ∑
Pi∈P∩A

deg(Pi)
]2

= λ2
∫∫

(A×(0,1])2
E[deg(p1) deg(p2)] dp1 dp2

+ λ

∫
A×(0,1]

E[deg(p1)2] dp1 − λ2
(∫

A×(0,1]
E[deg(p1)] dp1

)2

= λ|A|
∫ 1

0
E[deg(0, u)2] du+ λ2

∫∫
(A×(0,1])2

Cov(deg(p1), deg(p2)) dp1 dp2,
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where the last equality holds due to translation invariance of deg( · ).
To bound the first integral, note that for all u ∈ (0, 1], the random variable deg(0, u)

is Poisson distributed with parameter (2βλ′u−γ)/(1 − γ′). Hence, E[deg(0, u)2] =
2βλ′

1−γ′u−γ(1 + 2βλ′

1−γ′u−γ) ∈ O(u−2γ). Thus, we obtain for γ < 1/2 that

∫ 1

0
E[deg(0, u)2] du <∞.

Next, we deal with the second term and note that the covariance in the integrand
is given by

Cov(deg(p1),deg(p2)) = E
[ ∑
P ′∈P ′

1
{
P ′ ∈ B({p1, p2})

}]
+ E

[ ∑
P ′

1 ̸=P ′
2∈P ′

1
{
P ′

1 ∈ B(p1), P ′
2 ∈ B(p2)

}]
− E

[ ∑
P ′∈P ′

1
{
P ′ ∈ B(p1)

}]
E

[ ∑
P ′∈P ′

1
{
P ′ ∈ B(p2)

}]
= λ′

∫
S
1

{
p′ ∈ B({p1, p2})

}
dp′ = λ′|B({p1, p2})|.

From Lemma C.6.1 with m = 1 and translation invariance, we obtain that∫
A×(0,1]

∫
S
|B({p1, p2})|dp1 dp2 = 1

1− 2γ′
(2β)2

1− γ

∫ 1

0
u−γ du <∞.

Hence, Var(T1) = Var(S([0, 1])) <∞. Similarly, we obtain that∑
k⩾2

Cov(T1, Tk) = E
[ ∑
Pi∈P∩[0,1]×(0,1],
Pj∈P∩[1,∞)×(0,1]

deg(Pi) deg(Pj)
]

− E
[ ∑
Pi∈P∩[0,1]×(0,1]

deg(Pi)
]
E

[ ∑
Pj∈P∩[1,∞)×(0,1]

deg(Pj)
]

⩽ λ2
∫

[0,1]×(0,1]

∫
S

Cov(deg(p1), deg(p2)) dp2 dp1

⩽
λ2λ′

1− 2γ′

( 2β
1− γ

)2 ∫ 1

0
u−γ du <∞,

thereby showing the finiteness of
∑
k⩾1 Cov(T1, Tk).

Proof of the stable limit

The idea of the proof of Theorem C.2.5 (b) is to apply [107, Theorem 4.5.2], which
says the following. Let Xi, i ⩾ 1 be i.i.d. nonnegative random variables with P(X1 >
x) ∼ Ax−α for some α ∈ (1, 2) and A > 0. Then n−1/α ∑

i⩽n(Xi −E[Xi]) converges in
distribution to an α-stable random variable.
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Proof of Theorem C.2.5 (b). Let un := n−b for an arbitrary choice of b ∈ (2/3, 1). We
decompose Sn into

Sn = S⩾
n + S⩽

n :=
∑

P∈P∩Sn,⩾un

deg(P ) +
∑

P∈P∩Sn,⩽un

deg(P ),

where Sn,⩾u := [0, n]× [u, 1] and Sn,⩽u := [0, n]× (0, u].
First, we show that n−γ(S⩾

n − E[S⩾
n ]) converges to 0 in probability as n→∞. By

Chebychev’s inequality, this follows once we have shown that Var(S⩾
n ) ∈ o(n2γ). Note

that
Var(S⩾

n ) = λ

∫
Sn,⩾un

E[deg(p)2] dp

+ λ2
∫∫

S2
n,⩾un

Cov(deg(p1),deg(p2)) dp1 dp2.
(C.6)

Here, by translation invariance, the first term is bounded by (nu1−2γ
n )/(2γ − 1), which

is in o(n2γ) since 1− b(1− 2γ) < 2γ for all b < 1 and γ > 1/2. For the second term,
Lemma C.6.1 gives the bound

2nλ2
∫ 1

un

∫
S⩾u

|B({(0, u), (y, v)})| d(y, v) du ∈ O(n),

where S⩾u := R× [u, 1]. Thus, n−γ(S⩾
n − E[S⩾

n ]) P−−−→
n↑∞

0.
For u ⩽ 1, we set µ(u) := E[deg(0, u)] = (2βu−γ)/(1− γ′) and

S(1)
n :=

∑
(X,U)∈P∩Sn,⩽un

µ(U) and S(2)
n :=

∑
i⩽⌈λn⌉

µ(Ui)1
{
Ui ⩽ un

}
,

where U1, U2, . . . are i.i.d. uniforms on (0, 1]. We next prove that E[|S⩽
n − S(1)

n |] +
E[|S(1)

n − S(2)
n |] ∈ o(nγ). For the first expectation, note that, by the Mecke equation,

E[|S⩽
n − S(1)

n |] ⩽ nλ

∫ un

0
E[|deg(0, u)− µ(u)|] du

⩽ nλ

∫ un

0
Var(deg(0, u))1/2 du = nλ

∫ un

0
µ(u)1/2 du,

Therefore, E[|S⩽
n − S(1)

n |] ∈ O(nu1−γ/2
n ). Since 1 − b(1 − γ/2) < γ, which holds for

b > 2/3, we conclude that n−γ E[|S⩽
n − S(1)

n |]→ 0.
Second, we obtain a Poisson random variable N with parameter λn,

E[|S(1)
n − S(2)

n |] ⩽ E[|N − ⌈λn⌉|]
∫ un

0
µ(u) du ⩽

(
Var(N)1/2 + 1

) ∫ un

0
µ(u) du.

Now, Var(N) = λN and the integral above is in O(u1−γ
n ). Therefore, E[|S(1)

n −S(2)
n |] ∈

O(n1/2u1−γ
n ). Since 1/2− b(1− γ) < γ, which holds for all b if γ > 1/2, it follows that

n−γ E[|S(1)
n − S(2)

n |]→ 0.
It therefore suffices to prove that n−γ(S(2)

n −E[S(2)
n ]) converges in distribution to a

stable random variable. Note that by Lemma B.5.2,∑
i⩽⌈λn⌉

µ(Ui)1
{
Ui > un

} L2
−−−→
n↑∞

0.

Finally, [107, Theorem 4.5.2] implies that n−γ−1 ∑
i⩽⌈λn⌉(µ(Ui)− E[µ(Ui)]) converges

in distribution to a γ−1-stable random variable.
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C.7 Proof of Theorem C.2.6
We now extend the proof of Theorem C.2.5 to the case of m-simplices. More precisely,
we consider

Sn,m :=
∑

P∈P∩Sn

dm(P ),

where for p = (x, u), we set

dm(p) := 1
m!

∑
(P1,...,Pm)∈(P∩S>u)m

̸=

1
{
P ′ ∩B({p, P1, . . . , Pm}) ̸= ∅

}
is the number of m-simplices containing p.

Lemma C.7.1 (Moment computations). Let m ⩾ 1. Then,

(a) E[dm(0, u)2] ∈ O(u−2γ).

(b) E[Var(dm(0, u) | P ′)] ∈ O(u1−3γ).

(c)
∫
S|E[Cov(dm(0, u), dm(p) | P ′)]|dp ∈ O(u1−3γ).

(d) Var(E[dm(0, u) | P ′]) ∈ O(u−γ).

(e)
∫
S|Cov(E[dm(0, u) | P ′],E[dm(p) | P ′])|dp ∈ O(u−γ).

We defer the technical computations to the end of this section and first explain
how to conclude the proof of Theorem C.2.6 based on Lemma C.7.1.

Proof of the normal limit

For γ < 1/2, we follow the same strategy as in the proof of Theorem C.2.5 (a).

Proof of Theorem C.2.6 (a). Let

Ti :=
∑

Pj∈[i−1,i]×(0,1]
dm(Pj).

We apply [107, Theorem 4.4.3] which holds for sequences of identically distributed
associated random variables T1, T2, . . . , and need to show that

∑
k⩾1 Cov(T1, Tk) <∞.

By the formula for the total variance, we have Var(T1) = E[Var(T1 | P ′)] +
Var(E[T1 | P ′]), where, by Lemma C.7.1 (a), (c), and translation invariance

E[Var(T1 | P ′)] = λ

∫
S1
E[dm(p)2] dp

+ λ2
∫∫

S2
1

E
[
Cov(dm(p1),dm(p2) | P ′)

]
dp1 dp2 <∞.

Moreover, by Lemma C.7.1 (e) and translation invariance,

Var(E[T1 | P ′]) = λ2
∫∫

S2
1

Cov
(
E[dm(p1) | P ′],E[dm(p2) | P ′]

)
dp1 dp2 <∞.

142



C.7. Normal and stable limits of the simplex count

Analogously, we obtain that∑
k⩾2

Cov(T1, Tk) =
∑
k⩾2

(
E[Cov(T1, Tk | P ′)] + Cov

(
E[T1 | P ′],E[Tk | P ′]

))
= λ2

∫
S1

∫
[1,∞)×(0,1]

E
[
Cov(dm(p1),dm(p2) | P ′)

]
dp1 dp2

+ λ2
∫
S1

∫
[1,∞)×(0,1]

Cov
(
E[dm(p1) | P ′],E[dm(p2) | P ′]

)
dp1 dp2 <∞.

Proof of the stable limit

Next, we prove Theorem C.2.6 (b).

Proof of Theorem C.2.6 (b). The idea is to proceed analogously to the proof of The-
orem C.2.5 (b). We assume that γ′ < 1/(2m + 1), and choose un = n−b, where
b ∈ (2/3, 1), similarly to the proof of Theorem C.2.5. Then, we split Sn,m into

Sn,m = S⩾
n,m + S⩽

n,m :=
∑

Pi∈P∩Sn,⩾un

dm(Pi) +
∑

Pi∈P∩Sn,⩽un

dm(Pi).

We now show that n−γ(S⩾
n,m −E[S⩾

n,m]) converges to 0 in probability. This follows,
as soon as we have proved that Var(S⩾

n,m) ∈ o(n2γ). We have

Var(S⩾
n,m)

= nλ

∫ 1

un

E[dm(0, u)2] du+ nλ2
∫
S1,⩾un

∫
Sn,⩾un

Cov(dm(x, u), dm(p)) dp d(x, u).

By Lemma C.7.1 (a), (c), and translation invariance, there are constants c1, c2 > 0
such that the above is bounded by

c1nλ

∫ 1

un

u−2γ du+ c2nλ
2

∫ 1

un

u1−3γ du ∈ O(nu1−2γ
n ),

which is in o(n2γ), since 1−b(1−2γ) < 2γ for γ > 1/2. Thus, n−γ(S⩾
n,m−E[S⩾

n,m]) P−→ 0.
Next, we let

S(1)
n,m :=

∑
(X,U)∈P∩Sn

µm(U), S(2)
n,m :=

∑
i⩽⌈λn⌉

µm(Ui)1
{
Ui ⩽ un

}
,

where µm(u) := E[dm(0, u)], and U1, U2, . . . are i.i.d. uniform random variables on (0, 1].
We next prove that E[|S⩽

n,m−S(1)
n,m|]+E[|S(1)

n,m−S(2)
n,m|] ∈ o(nγ). For the first expectation,

note that by the Mecke equation,

E[|S⩽
n,m − S(1)

n,m|] ⩽ nλ

∫ un

0
E[|dm(0, u)− µm(u)|] du ⩽ nλ

∫ un

0
Var(dm(0, u))1/2 du.

From Lemma C.7.1 (b), (d), we have that Var(dm(0, u)) ∈ O(u1−3γ). Hence,

E[|S⩽
n,m − S(1)

n,m|] ⩽ nu3(1−γ)/2
n ∈ o(nγ),

since 1 − b(3(1 − γ)/2) < γ for b > 2/3. From here, we conclude the proof as in
Theorem C.2.5 (b).
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Finally, we conclude by proving Lemma C.7.1. We note that the proof of Part (b)
is largely parallel to Part (c), and the proof of Part (d) is mainly parallel to Part (e).
Nevertheless, to make the manuscript self-contained, we provide the details.

Proof of Lemma C.7.1. Henceforth, we use the abbreviations

pi,m := (pm−i+1, . . . , p2m−i)
−→p i,m := {pm−i+1, . . . , p2m−i},

−→p i,m(u) := {(0, u), pm−i+1, . . . , p2m−i}.

Furthermore, to ease notation, we introduce for a set A the abbreviation P ′
A :=

P ′ ∩B(A).

Part (a). Conditioned on P ′, dm(0, u) is a U -statistic. Therefore, by Reitzner and
Schulte [92, Lemma 3.5] with ki := 1/(i!((m− i)!)2),

E[dm(0, u)2 | P ′] =
m∑
i=0

λ2m−iki

∫
S2m−i
⩾u

P
(
P ′−→p m(u) ̸= ∅,P ′−→p i,m(u) ̸= ∅

∣∣ P ′) dp2m−i.

Therefore,

E[dm(0, u)2] =
m∑
i=0

λ2m−iki

∫
S2m−i
⩾u

P
(
P ′−→p m(u) ̸= ∅,P ′−→p i,m(u) ̸= ∅

)
dp2m−i

⩽
m∑
i=0

λ2m−iki

∫
S2m−i
⩾u

P(P ′−→p 2m−i(u) ̸= ∅)

+ P(P ′−→p m(u) ̸= ∅)P(P ′−→p i,m(u) ̸= ∅) dp2m−i,

where we used that for all Borel sets A,B ⊆ S, P(P ′ ∩ A ̸= ∅,P ′ ∩ B ̸= ∅) =
P(P ′ ∩ A ∩ B ̸= ∅) + P(P ′ ∩ A \ B ̸= ∅,P ′ ∩ B \ A ̸= ∅). Next, we use that for all
Borel set A ⊆ R× (0, 1], P(P ′ ∩A = ∅) ⩽ λ′|A| and obtain that the above is bounded
by

2m∑
k=m

λk
∫
Sk
⩾u

(
λ′|B(−→p k(u))|+ (λ′)2|B(−→p m(u))||B({(0, u), pm+1, . . . , pk})|

)
dpk,

which is of order O(u−2γ) by Lemma C.6.1.

Part (b). By Reitzner and Schulte [92, Lemma 3.5],

Var(dm(0, u) | P ′) =
m∑
i=1

λ2m−iki

∫
S2m−i
⩾u

1
{
P ′−→p m(u) ̸= ∅

}
1

{
P ′−→p i,m(u) ̸= ∅

}
dp2m−i.

Therefore,

E
[
Var(dm(0, u) | P ′)

]
=

m∑
i=1

λ2m−iki

∫
S2m−i
⩾u

P(P ′−→p m(u) ̸= ∅,P ′−→p i,m(u) ̸= ∅) dp2m−i.
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Similarly to Part (a), we find that the above is bounded by∫
S2m−i
⩾u

P(P ′−→p 2m−i(u) ̸= ∅) + P(P ′−→p m(u) ̸= ∅)P(P ′
{(0,u),pm−i+1,...,p2m−i} ̸= ∅) dp2m−i

⩽
∫
S2m−i
⩾u

λ′|B(−→p 2m−i(u))|+ (λ′)2|B(−→p m(u))||B({pm, . . . , p2m−i})|dp2m−i,

where the last inequality follows by the same argument as in Part (a). Re-
call that −→p i,m(u) = {(0, u), pm−i+1, . . . , p2m−i}. Next, we apply Lemma C.6.1 to
|B(−→p 2m−1(u))|, integrated with respect to p2m−1, and to |B(−→p 1,m)|, integrated with
respect to pm+1, . . . , p2m−i. This gives

λm(λ′)2
( m∑
i=1

ki
(2β)m−i+1

(1− γ)m−i
1

1− (m− i+ 1)γ′

)
×

∫
Sm
⩾u

v−γ
m |B(−→p m(u))|dpm +O(u−γ),

where pm := (ym, vm). Moreover, for all u ∈ (0, 1],∫
Sm
⩾u

v−γ
m |B(−→p m(u))|dpm

=
∫
S

∫
Sm
⩾u

v−γ
m 1

{
|z| ⩽ βw−γ′

u−γ}
×

m∏
i=1

1
{
|z − yi| ⩽ βw−γ′

v−γ
i

}
d((y1, v1), . . . , (ym, vm)) d(z, w)

⩽ (2β)m
∫
S

∫
(0,1]m−1×[u,1]

w−mγ′
v−γ

1 · · · v
−γ
m−1v

−2γ
m

× 1
{
|z| ⩽ βw−γ′

u−γ}
d(v1, . . . , vm) d(z, w)

= (2β)m+1(u1−2γ − 1)u−γ

(1− γ)m−1(2γ − 1)

∫ 1

0
w−(m+1)γ′ dw

= (2β)m+1(u1−2γ − 1)u−γ

(1− γ)m−1(2γ − 1)(1− (m+ 1)γ′) ,

which shows that E[Var(dm(0, u) | P ′)] ∈ O(u1−3γ).

Part (c). From the polarization identity Cov(X,Y ) = 1/4(Var(X+Y )−Var(X−Y ))
and [92, Lemma 3.5], applied to the U -statistics dm(0, u)+dm(p) and dm(0, u)−dm(p),
we obtain that∫

S
Cov(dm(0, u),dm(p) | P ′) dp

=
m∑
i=1

λ2m−iki

∫
S

∫
Sm
⩾u×Sm−i

⩾v

1
{
P ′−→p m(u) ̸= ∅

}
1

{
P ′

{p,pm−i+1,...,p2m−i} ̸= ∅
}

dp2m−i dp,
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where p := (y, v). Therefore, analogously to Part (b),∫
S

∣∣∣E[
Cov(dm(0, u),dm(p)

∣∣ P ′)
]∣∣∣ dp

⩽
m∑
i=1

λ2m−iki

∫
S

∫
Sm
⩾uS

m−i
⩾v

λ′∣∣B(−→p 2m−i(u))
∣∣

+ (λ′)2∣∣B(−→p m(u))
∣∣∣∣B({p, pm, . . . , p2m−i})

∣∣ dp2m−i dp.

Now, we apply Lemma C.6.1 to |B(−→p 2m−1(u))| (integrated with respect to p2m−1)
and to |B({p, pm, . . . , p2m−1})| (integrated with respect to (p, pm+1, . . . , p2m−i)). This
gives

λm(λ′)2
( m∑
i=1

(2β)m−i+2

(1− γ)m−i+1
ki

1− (m− i+ 2)γ′

) ∫
Sm
⩾u

v−γ
m |B(−→p m(u))| dpm +O(u−γ).

From here,
∫
S E[Cov(dm(0, u), dm(p) | P ′)] dp ∈ O(u1−3γ) follows analogously to (C.7)

as asserted.

Part (d). We have that

E[dm(0, u) | P ′] = λm

m!

∫
Sm
⩾u

1
{
P ′−→p m(u) ̸= ∅

}
dpm,

and therefore,

Var(E[dm(0, u) | P ′]) = λ2m

(m!)2

∫
S2m
⩾u

Cov
(
1

{
P ′−→p m(u) = ∅

}
,1

{
P ′−→p 0,m(u) = ∅

})
dp2m.

(C.7)
Now, we use that Cov(XY,XZ) = E[Y ]E[Z] Var(X) for independent X,Y, Z. We let

X := 1
{
P ′−→p 2m(u) = ∅

}
,

Y := 1
{
P ′ ∩ (B(−→p m(u)) \B(−→p 0,m(u))) = ∅

}
,

Z := 1
{
P ′ ∩ (B(−→p 0,m(u)) \B(−→p m(u))) = ∅

}
,

and deduce that

Var(E[dm(0, u) | P ′])

= λ2m

m!

∫
S2m
⩾u

P
(
P ′(B(−→p m(u)) ∪B(−→p 0,m(u))) = 0

)
P

(
P ′−→p 2m(u) ̸= ∅

)
dp2m

⩽
λ2mλ′

m!

∫
S2m
⩾u

|B(−→p 2m(u))| dp2m,

which shows by Lemma C.6.1 that Var(E[dm(0, u) | P ′]) ∈ O(u−γ).
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Part (e). Analogously to (C.7), we find that∫
S

∣∣Cov(E[dm(0, u) | P ′],E[dm(p) | P ′])
∣∣ dp

= λ2m
∫
S

∫
Sm
⩾u×Sm

⩾v

∣∣∣Cov
(
1

{
P ′−→p m(u) ̸= ∅

}
,1

{
P ′

{p}∪−→p i,m
̸= ∅

})∣∣∣ dp2m dp,

where p = (y, v). Here, we apply the relation Cov(XY,XZ) = E[Y ]E[Z] Var(X) with

X := 1
{
P ′

{p}∪−→p 2m(u) = ∅
}
,

Y := 1
{
P ′ ∩ (B(−→p m(u)) \B({p} ∪ −→p 0,m)) = ∅

}
,

Z := 1
{
P ′ ∩ (B({p} ∪ −→p 0,m) \B(−→p m(u))) = ∅

}
,

and deduce analogously to (C.8) that∫
S

∣∣∣Cov(E[dm(0, u) | P ′],E[dm(p) | P ′])
∣∣∣ dp

⩽ λ2m
∫
S

∫
Sm
⩾u×Sm

⩾v

|B({p} ∪ −→p 2m(u))| dp2m dp,

which is by Lemma C.6.1 of order O(u−γ).

C.8 Simulation study
To demonstrate how the theoretical results can be applied to networks of finite size, this
section presents a simulation study analyzing finite networks and Palm distributions.

To analyze the statistical properties of the model, we utilize a Monte Carlo
approach: we implemented a C++ algorithm to generate several higher-order networks
with identical model parameters. The simulation of a finite network consists of the
following steps:

(1) We first construct a torus of dimension 1, and generate two Poisson point
processes P, P ′. For practical reasons, we do not keep the intensity measures λ
and λ′ of the Poisson point processes constant throughout the simulations, but
instead generate the network samples on a torus of Lebesgue measure 1, and
adjust the Poisson intensity measures accordingly to generate networks with
different expected number of P- and P ′-vertices. After generating P and P ′, the
vertices are equipped with a mark uniformly distributed in (0, 1].

(2) Then, we generate the connections between the P- and P ′-vertices using the
connection rule described in (C.2). By using periodic boundary conditions, we
can treat the vertices equivalently, irrespective of their position in the torus.
Note that the parameter β can be tuned to adjust the expected number of edges
in the network. The expected ∆0-degree of a point o = (0, u) is given by

E
[ ∑
p′∈P ′

1
{
p′ ∈ B(o)

}]
= 2βλ′

(1− γ)(1− γ′) ,

where we followed the same arguments as in the proof of C.6.1, with m = 0.
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(3) Finally, we construct the higher-order network on P , where the set of m-simplices
is determined according to (C.4).

The simulation of the network is computationally expensive. If we checked the
connection condition for every P- and P ′-vertex pair, our algorithm would have a time
complexity of O(λλ′), where λ and λ′ are the intensity of the Poisson processes for
the P- and P ′-vertices, respectively. When deciding which points in P and P ′ are
connected, we partition the space S into rectangles containing multiple points, similarly
to the quadtree data structures [96]. This way, we can reduce the computational
complexity of the simulation as

• if the furthest points of two rectangles with the highest marks connect, it is
certain that all point pairs in the rectangles are connected;

• if the closest points of two rectangles with the lowest marks do not connect, it is
certain that no point pairs in the rectangles are connected.

The width of the rectangles is set to be proportional to b−γ and b−γ′ for the P- and
P ′-vertices, respectively, where b denotes the bottom mark of the rectangle. This
results in a layout of rectangles as shown in Figure C.1.

Before generating a finite network sample, we set the model parameters to be of
the same order of magnitude when fitted to the analyzed datasets. The intensity
measures of the Poisson point processes are set to λ = λ′ = 100 000. Aligned with these
parameters, the number of P- and P ′-vertices were 100 335 and 93 919, respectively.
The γ, γ′ model parameters were set to γ = 0.7, γ′ = 0.2. Furthermore, β was
set so that the expected number of ∆0-degrees in the infinite network limit was 3:
β = 3.6 · 10−5.

First, we examine three degree distributions of the networks, which are analyzed
in Theorem C.2.3.

• The ∆0-degree distribution characterizes the distribution of the number of P ′-
vertices connected to a typical P-vertex.

• The ∆1-degree distribution is the distribution of the number of P ′-vertices
connected to a pair of P-vertices.

• Finally, the distribution of the number of P-vertices connected to a typical
P ′-vertex is described by the ∆′

0-degree distribution.

position

mark

Figure C.1: Partition of S into rectangles
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Figure C.2: Main properties of a network sample generated by our model

The main characteristics of a network generated with these parameters are shown
in Figure C.2. In the top row of Figure C.2, one can see the largest component of the
network (left). A polygon is drawn representing the convex hull of a set of P-vertices
whenever they form a simplex in the network. The higher number of P-vertices
forms a simplex; the darker the color of the corresponding polygon. From the largest
component of the network, which contained 12 385 P-vertices, one can see that the
network is sparse, and that the network layout is dominated by a few dense regions
corresponding to P-vertices with high degrees.

When looking at the positions of the P-vertices embedded in the space S (right), one
can see that the P-vertices form clusters that are connected by the above-mentioned
heavy vertices. As illustrated in the bottom row of C.2, the various degree distributions
of the P- and P ′-vertices are all heavy-tailed, and the degree distribution of the P-
vertices is heavier than the degree distribution of the P ′-vertices, aligned with our
theoretical results.

We also rely on Palm calculus to simulate typical simplices in networks devoid
of finite-size effects. To do so, we first place a typical P-vertex (0, u) at the origin.
Then, we simulate P ′-vertices (y1, v1), . . . , (yn, vn) ∈ B(0, u) in its neighborhood where
P ′-vertices connect to it, where n is a Poisson distributed random variable with
parameter λ′|B(0, u)|. Finally, further P-vertices are generated by a Poisson process of
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intensity λ in the union of the neighborhoods
⋃
iB(yi, vi) of the P ′-vertices. Each of the

neighborhoods B(yi, vi) can be split to three parts, where a connecting P-vertex (x,w)
must satisfy the below conditions:

left tail w ⩽ (yi − x)/βv−γ′

i x < yi − βv−γ′

i ;
center w ⩽ 1 yi − βv−γ′

i ⩽ x ⩽ yi + βv−γ′

i ;
right tail w ⩽ (x− yi)/βv−γ′

i yi + βv−γ′

i < x.

Next, we take the union of the center parts of the neighborhoods, and generate
P-vertices in the union. Finally, we determine the dominating tail parts at every
position x, and generate P-vertices in the corresponding tail parts. Then, the simplices
of the Palm distribution are those whose lowest mark P-vertex is (0, u).

With the model parameters set, the simulation framework provides an opportunity
to analyze the distribution of ∆0-degrees, ∆1-degrees, and ∆′

0-degrees in the generated
finite networks of different sizes by varying the intensities of the point processes.
Specifically, to examine the finite-size effect on the distributions of the network
properties of interest, we simulated 100 networks and kept the model parameters
γ = 0.7, γ′ = 0.2 constant, but altered the expected number λ and λ′ of P- and
P ′-vertices, respectively. To examine the Palm distribution, we simulated 100 sets of
10 000 networks. In this case, the values of λ, λ′ are indifferent, and we set them to
λ = λ′ = 1. Lastly, the parameter β was set so that the expected number of ∆0-degrees
in the infinite network limit was 3.

As shown in Theorem C.2.3, all the examined distributions exhibit a power-law
tail in the infinite network limit. Thus, we fitted a power law distribution to the
simulated values using the maximum likelihood method described by [7]. Determining
the minimum value xmin from which the power-law distribution should be fitted is
not trivial. If we use lower values of xmin, more data points can be considered for
the fitting, resulting in a more robust fit of the power-law distribution. However, the
estimated power-law exponent is more biased, as the power-law might not hold at
lower values. Conversely, for higher values of xmin, the estimated power-law exponent
has less bias, but the fit is less robust as fewer data points are considered.

The boxplots of Figure C.3 show how the fitted power-law exponents of the above-
mentioned degree distributions fluctuate relative to the theoretical value derived for
infinite networks in Theorem C.2.3. In the top row, we used xmin = 10 for the fitting,
while in the bottom row, we used xmin = 15. It can be observed that the exponents
in the top row fluctuate less but exhibit a higher bias, whereas the exponents in the
bottom row fluctuate more but display a lower bias. This is because a set of P-vertices
form a simplex if they share a common P ′-vertex, and this more complex relationship
between the P- and P ′-vertices results in a higher variance of the estimated exponents.
We can also see that the degree exponents fluctuate much more for the ∆′

0-degree
distribution than for the ∆0-degree distribution. This can be explained by the different
decay rates of the neighborhoods of P- and P ′-vertices: the power-law tails have
exponents 1/γ = 1.43 and 1/γ′ = 0.5, respectively, which results in fewer data points
in the tail of the ∆′

0-degree distribution compared to the ∆0-degree distribution. As it
will be shown in Section C.9, the ∆0- and ∆′

0-degree distributions will be of particular
interest when fitting the model parameters γ and γ′ to the datasets. Analyzing
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Figure C.3: Fluctuation of the degree distribution exponents for different network
sizes. The top row shows the power-law exponents when estimated from values
larger than xmin = 10. In contrast, the bottom row contains boxplots for the
distribution of the exponents estimated from values larger than xmin = 15.

the boxplots of the ∆0- and ∆′
0-degree distributions, we can see that the power-law

exponents of the degree distributions are close to the theoretical values derived for
infinite networks above a network size of 10 000. Considering the optimal trade-off
between bias and robustness, we chose to use xmin = 10 for the fitting in the following
sections.

Next, we analyze the distributions of the first Betti number by simulating 100 net-
works with fixed λ = λ′ = 100 000 and varying γ and γ′ parameters. The histograms
with fitted normal distributions and the corresponding Q-Q plots are shown in Fig-
ure C.4. In alignment with Theorem C.2.4, the Q-Q plots show that the Betti
number is normally distributed for parameters γ < 1/4 and γ′ < 1/8. The figures
for 1/4 ⩽ γ ⩽ 1/2 and γ′ ⩾ 1/8 suggest that the normal distribution of the first
Betti number also holds for these parameter ranges. The distribution of the Betti
number for γ = 0.75, however, exhibits a fat left tail. Note that the leftmost bins of
the histograms for γ = 0.75 are at 0, which means that some simulated networks did
not contain any loops. This behavior can be explained by the presence of low-mark P-
and/or P ′-vertices that connect to many P ′- and P-vertices when the edge count has
an infinite variance, making the loops less likely to form. This observation leads to the
conjecture that the Betti numbers have α-stable distributions if γ > 0.5.

Finally, we analyze the distribution of the number of edges and triangles in the
simulated networks. As before, we simulated 100 networks with fixed λ = λ′ = 100 000
and varying γ and γ′ parameters. The distribution of the edge counts is presented
in Figure C.5, where we fitted a normal distribution to the simulated values and
visualized the corresponding Q-Q plots. As shown in Theorem C.2.5 in the infinite
network size limit, now the Q-Q plots show for finite networks that the number of
edges are normally distributed for parameters γ < 1/2 and γ′ < 1/3, and that the
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Figure C.4: Distribution of the first Betti numbers with different γ and γ′

parameters
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Figure C.5: Distribution of edge counts with different γ and γ′ parameters. For
each combination of γ and γ′, we show the distribution of edge counts with the
fitted normal distribution and the corresponding Q-Q plot.
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number of edges have an α-stable distribution if γ > 1/2 and γ′ ⩾ 1/3. For γ = 1/2,
it can be inferred from the Q-Q plots that the distribution of the number of edges is
close to a normal distribution. The distribution of the triangle counts together with
the fitted normal distributions and the Q-Q plots are shown in Figure C.6. Again, the
simulated distributions of finite networks align with Theorem C.2.6: the Q-Q plots
show that the number of triangles is normally distributed for parameters γ < 1/2
and γ′ < 1/5. It is also clear from the Q-Q plots of Figure C.6 that if γ > 1/2 and
γ′ < 1/5, the number of triangles has an α-stable distribution with α = 1/γ, which
was also shown for infinite networks in Theorem C.2.6. We can furthermore conjecture
that the number of triangles has an α-stable distribution if γ′ > 1/5 irrespective of
the value of γ.

γ
′
=

0.
1
0

γ
′
=

0.
20

γ
′
=

0.
30

γ = 0.25 γ = 0.50 γ = 0.75

Figure C.6: Distribution of triangle counts with various γ and γ′ parameters.
For each combination of γ and γ′, we show the distribution of triangle counts
with the fitted normal distribution and the corresponding Q-Q plot.

After analyzing the degree distributions, Betti numbers, and the number of edges
and triangles in the simulated networks, we can conclude that the theoretical results
derived for infinite networks also hold for finite networks. We finish the simulation
study by analyzing further degree distributions, which, although not of particular
interest in the following sections, may be examined in a further study.

• The 0-coface degree distribution is the distribution of the number of edges
incident to a P-vertex.

• The 1-coface degree distribution is the distribution of the number of triangles
incident to an edge.

As we will see in Section C.9, these degree distributions exhibit a power-law tail in the
datasets we analyze.

To examine the coface degree distribution of the networks generated by the model,
we calculated the coface degree distributions for the sample network described at the
beginning of Section C.8. We also examined the fluctuations of the coface degree distri-
bution exponents for different network sizes, and, as before, we simulated 100 networks
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with varying λ = λ′ intensities and fixed γ = 0.7 and γ′ = 0.2 parameters. In this case
again, we used xmin = 10 for the fitting and set β so that E[∆∗

0] = 3. The distributions
of the 0- and 1-coface degrees and the fluctuations of the exponents are shown in
Figure C.7. We see that the distributions of the coface degrees are heavy-tailed, and
the power-law exponents of the distributions converge above a network size of 10 000.
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Figure C.7: Typical coface degree distributions and the fluctuation of the
power-law exponents for different network sizes. The power-law exponents were
estimated from values larger than xmin = 10.

C.9 Analysis of collaboration networks
After the analysis of the finite-size effects in Section C.8, we now compare our model
with real-world datasets. To do so, we chose to analyze coauthorship networks, where
the authors are represented by P-vertices, and a P ′-vertex represents each publication.

Using the Python wrapper for the arXiv API, we collected all documents from the
arXiv preprint server that were uploaded up to 18 June 2024. Based on the label of
the documents referring to their primary categories, we created four datasets for the
four largest scientific fields, namely, computer science, electrical engineering
and systems science, mathematics, and statistics, that we denote by cs, eess,
math, and stat, respectively. In these datasets, we had access to the list of authors’
names of the documents. Identifying the authors by their names, we created

• a bipartite network where the P-vertices are the authors, and the P ′-vertices are
the documents;

• a simplicial complex representing the higher-order network of the authors.

As simplicial complexes are closed under taking subcomplexes, each document with n
authors is represented by 2n − 1-simplices in the simplicial complex. This exponential
dependence of the number of simplices on the number of authors led to a disproportion-
ate influence of documents with a high number of authors on our results. To mitigate
this effect, we included documents with at most 20 authors in our analysis, thereby
neglecting a proportion of 0.13% of the documents.

The main properties of the datasets are summarized in Table C.1.
Using the documents as P ′-vertices, we created a filtered simplicial complex for

each dataset. We set the filtration value of a set of authors to be the number of
papers they are all authors of, and used a filtration value decreasing from ∞ to 0 to
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Table C.1: Main properties of the datasets

dataset authors documents components size of largest component

cs 504959 540573 23909 439375
eess 93005 85445 6061 67700
math 211757 500403 27157 163738
stat 48700 40869 4236 36094

create the filtered Dowker complex. We present the persistence diagrams computed
from the filtered Dowker complex in Figure C.8. Although the datasets contain many
components and loops, some of them share the same birth and death filtration values,
resulting in fewer points in the persistence diagrams.

Further properties of the datasets are illustrated in Figure C.9. In the top row, we
visualized the largest components of the datasets, where each document is represented
by a polygon around the authors, with darker colors indicating documents with more
authors. Further rows display the degree distributions of the datasets, along with the
fitted power-law distributions. The degree distributions that we examine are similar
to those before in Section C.8:

• The ∆0-degree distribution is the distribution of the number of documents an
author published.

• The ∆1-degree distribution describes the distribution of the number of documents
that pairs of authors wrote together.

• The distribution of the number of authors of a document is the ∆′
0-degree

distribution.

We observe that all the visualized degree distributions exhibit heavy tails, and the
fitted power-law distributions accurately describe the data.

To compare the datasets with our model, we first need to estimate the model
parameters. The γ and γ′ parameters are estimated from the exponents of the fitted
power-law distributions to the ∆0- and ∆′

0-degree distributions, respectively.
Note that the datasets do not contain isolated P- and P ′-vertices, i.e., authors

without any documents and documents without any authors. Thus, we compensate
for these in our model so that the number of authors and documents in the datasets
match the number of nonisolated P- and P ′-vertices in the simulations, respectively.
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Figure C.8: Persistence diagrams of the datasets
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Figure C.9: Main properties of the datasets
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Let P0 and P ′
0 be the set of isolated P- and P ′-vertices in the simulated simplicial

complex, respectively, and let p := (x, u) ∈ P and p′ := (z, w) ∈ P ′. Then, the expected
number of nonisolated P-vertices in the simulation is given by

E
[
#(P \ P0)

]
= E

[∑
p∈P

1
{
P ′(B(p)) ̸= 0

}]
= λ

∫ 1

0
E

[
1

{
P ′(B(p)) ̸= 0

}]
du

= λ

∫ 1

0
1− P(P ′(B(0, u)) = 0) du = λ

∫ 1

0
1− exp

(
−λ′|B(0, u)|

)
du

= λ

∫ 1

0
1− exp

(
−λ′

∫ 1

0

∫ βu−γw−γ′

−βu−γw−γ′
dz dw

)
du

= λ

(
1−

∫ 1

0
exp

(
− 2βλ′

1− γ′u
−γ

)
du

)
.

After substituting µ := 2βλ′/(1− γ′)u−γ , we obtain

E
[
#(P \ P0)

]
= λ

(
1− 1

γ

(1− γ′

2βλ′

)− 1
γ

∫ ∞

2βλ′
1−γ′

µ
− 1

γ
−1e−µ dµ

)
= λ

(
1− 1

γ

(1− γ′

2βλ′

)− 1
γ Γ

(
−1
γ
,

2βλ′

1− γ′

))
,

where Γ denotes the upper incomplete gamma function. Following the same steps, we
find that the expected number of nonisolated P ′-vertices in the simulation is given by

E
[
#(P ′ \ P ′

0)
]

= λ′
(
1− 1

γ′

(1− γ
2βλ

)− 1
γ′ Γ

(
− 1
γ′ ,

2βλ
1− γ

))
.

Furthermore, we set the parameter β so that the expected number of edges in Gbip

in the simulation matches the number of author–document edges in the datasets.
Additionally, by the Mecke formula, we have

E
[ ∑
p∈P
p′∈P ′

1
{
p ∈ B(p′)

}]
=

∫
S2
P(p ∈ B(p′)) d(p, p′) = 2βλλ′

(1− γ)(1− γ′) .

By numerically solving the above system of equations given by the expected number of
nonisolated P- and P ′-vertices, we obtain the parameter estimates shown in Table C.2.

Using these parameters, we simulated a sample network for each dataset, which
is visualized in Figure C.10. While the top row contains the largest components of
the datasets, the bottom row displays the P-vertices in the space S. In both rows, as
above, each P ′-vertex is represented by a polygon around P-vertices connecting to
them with a darker color if the P ′-vertex is connected to more P-vertices. We can see
that the model networks possess a tree-like structure, dominated by a few high-degree
P-vertices.

To determine if our model can capture the higher-order structures of the datasets,
we need to perform hypothesis tests on the simplex counts and the first Betti num-
ber. Although Theorem C.2.5 and our conjecture in Section C.8 show that α-stable
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Table C.2: Fitted power-law exponents and the inferred model parameters

dataset ∆0-degree P ′-vertex degree
β λ λ′

exponent γ exponent γ′

cs 2.37 0.73 5.46 0.22 8.19 · 10−7 579719 532491
eess 2.75 0.57 5.50 0.22 7.89 · 10−6 98528 83985
math 2.44 0.69 6.51 0.18 1.03 · 10−6 231606 588628
stat 2.89 0.53 5.74 0.21 1.13 · 10−5 57488 41655

cs eess math stat

Figure C.10: The largest components of the simplicial complexes built from the
datasets

distributions describe the simplex counts and the first Betti number, it is not clear
how to fully specify all parameters of these distributions. Therefore, we estimated the
parameters of the α-stable distributions from the simulated networks to statistically
compare the datasets with those generated by the model. For each dataset, we sim-
ulated 100 networks, and fitted an α-stable distribution to the values with α = 1/γ,
which described the data well in all the cases.

The results of the hypothesis tests for the simplex counts and the first Betti
numbers are summarized in Figure C.11, and the parameters of the fitted distributions
are shown in Tables C.3, C.4, and C.5. Although the model parameters were set
to ensure that the expected number of ∆0-degrees in the simulation matches the
number of author-document edges in the datasets, the hypothesis tests indicate that
the higher-order structures of the datasets differ from those of the generated networks.
The case of the eess and math datasets is particularly interesting, as in the case of
the former, the simulated networks contain more triangles, but fewer edges, compared
to the datasets. In contrast, in the case of the latter, the opposite is true. In the
case of the first Betti numbers, the values of the datasets are substantially larger than
for the generated networks, and all the hypothesis tests are rejected. The reason for
this deviation is that the simulated networks are dominated by a few high-degree
P-vertices, resulting in a tree-like structure with a relatively small number of loops.
At the same time, the datasets contain more complex structures.
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Figure C.11: Hypothesis testing of the edge counts (top), triangle counts (center),
and Betti-1 (bottom) for the datasets. The model parameters were determined
based on the parameters of the datasets described in Table C.2.

Table C.3: Results of the hypothesis tests for the edge counts

dataset dataset value α̂ β̂ location scale p-value

cs 2663617 1.3658 1.0 2093994 43104 2.69 · 10−2

eess 351033 1.7506 1.0 314266 4331 1.13 · 10−2

math 498785 1.4415 1.0 2601637 36355 0.00
stat 128588 1.8918 1.0 77681 1201 1.73 · 10−4

Table C.4: Results of the hypothesis tests for the number of triangles

dataset dataset value α̂ β̂ location scale p-value

cs 5556409 1.3658 1.0 5823007 263597 9.13 · 10−1

eess 741063 1.7506 1.0 766277 28281 6.50 · 10−1

math 362024 1.4415 1.0 6973583 187554 0.00
stat 156384 1.8918 1.0 104413 3720 1.45 · 10−3
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Table C.5: Results of the hypothesis tests for the first Betti numbers

dataset dataset value α̂ β̂ location scale p-value

cs 218591 1.3658 −1.0 777 33 0.00
eess 10668 1.7506 −1.0 211 11 0.00
math 86229 1.4415 −1.0 1069 35 0.00
stat 8616 1.8918 −1.0 41 5 0.00

The results of the hypothesis tests indicate that, although our model captures many
properties of the datasets, it is too simplistic to accurately describe the higher-order
structures of the datasets.
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Functional Limit Theorems for
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Random Connection
Hypergraphs
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Abstract: We introduce a dynamic random hypergraph model constructed from
a bipartite graph. In this model, both vertex sets of the bipartite graph are
generated by marked Poisson point processes. Vertices of both vertex sets are
equipped with marks representing their weight that influence their connection
radii. Additionally, we assign the vertices of the first vertex set a birth-death
process with exponential lifetimes and the vertices of the second vertex set a time
instant representing the occurrence of the corresponding vertices. Connections
between vertices are established based on the marks and the birth-death processes,
leading to a weighted dynamic hypergraph model featuring power-law degree
distributions. We analyze the edge-count process in two distinct regimes. In the
case of finite fourth moments, we establish a functional central limit theorem
for the normalized edge count, showing convergence to a Gaussian AR(2)-type
process as the observation window increases. In the challenging case of the
heavy-tailed regime with infinite variance, we prove convergence to a novel stable
process that is not Lévy and not even Markov.
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The specific changes made to the paper, apart from minor typographical correc-
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D.1. Introduction

D.1 Introduction
Over the last 20 years, network science has evolved into a vibrant field of research,
with applications in various fields, including biology, sociology, computer science, and
physics. This is not surprising given the fundamental nature of the idea that many
systems are essentially described by a system of nodes together with a set of links
indicating which nodes interact with one another [102]. The success of network science
is based on the observation that a broad variety of networks share some fundamental
features, such as being scale-free (characterized by the existence of hubs) and exhibiting
strong clustering.

One of the widely used models in network science is the preferential attachment
model where nodes arrive over time and connect more likely to nodes with an already
high degree [3]. However, while this model has a compelling narrative and can reproduce
the scale-free property, its most basic versions lack the crucial feature of clustering.
While several solutions have been proposed to address this weakness, one of the most
elegant and powerful ones is the idea of embedding the components in some ambient
space and making the connection probabilities distance-dependent. Then, the triangle
inequality from the ambient space implies the desired clustering, and this idea led to
the development of the spatial preferential attachment models [57, 58].

While spatial preferential attachment exhibits many of the qualitative features
of real complex networks, they are notoriously hard to analyze from a rigorous
mathematical perspective. This is because the existence of edges can only be understood
by following the complex time-dynamics of the evolving networks. Due to these
disadvantages, the class of spatial inhomogeneous random graphs or weight-dependent
random connection models has gained popularity recently [64, 42, 41, 40]. Loosely
speaking, the connection probabilities are here not driven by the actual node degrees
but rather by their conditional expected values given their birth time. This is a
dramatic simplification, as the edge connection event can now be determined entirely
from the knowledge of the position and appearance times of the nodes involved in the
pair.

Despite the success of network science, with the rise in the amount and complexity
of available data, it is now apparent that in many settings, a simple network with
binary interactions is insufficient, and we need to take into account higher-order
interactions. This urgent need has been a main driver of the recent research effort in
hypergraphs and simplicial complexes [10, 2, 35, 17]. For instance, in economics, several
companies may simultaneously be exposed to the same risk, or in neuroscience, entire
groups of neurons must fire to create an effect [91, 39]. Finally, in social sciences, a
prototypical example is collaboration networks where several researchers work together
on a paper [90, 20, 83].

Due to the explosion of complexities, modeling such higher-order networks is
much harder than modeling binary networks. Inspired by ensembles from statistical
physics, a powerful class of such models is proposed by Bianconi and Rahmede [11],
but it is challenging to analyze from a rigorous mathematical perspective [37]. The
generic model is the multiparameter simplicial complex that is a higher-order extension
of the Erdős–Rényi model [100], but it lacks the scale-free property. However, as
noted before, as in the case of binary networks, enforcing clustering properties can
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be elegantly implemented by embedding nodes in an ambient space. In an earlier
work, we investigated such systems when higher-order networks are given by cliques in
scale-free networks (Paper B), and in Paper C, we introduced a novel spatial model
called random connection hypergraphs, which is based on a bipartite Poisson point
process.

A particular challenge in analyzing higher-order networks is that they change over
time. For instance, the topology of the neuronal network changes through the process
of learning, and in the case of scientific collaboration networks, PhD students enter
the network when completing their first paper and leave it when they retire. There
are currently highly active research streams in topological data analysis that aim to
provide a toolkit for tracking the topological changes over time, e.g., vines and zigzag
persistence [63, 109, 74]. The goal in this paper is to endow the random connection
model from Paper C with a dynamics and to prove functional central and stable
limit theorems in this setting. Here, we focus our attention on the most fundamental
quantity, namely the edge count of the underlying bipartite graph.

Before we describe our results in more detail, we comment on the existing literature
on functional limit results in time-varying models. The earliest investigations in this
context consider higher-order networks defined on a discrete point set, such as the
clique complex associated with a dynamic Erdős–Rényi graph or the multiparameter
simplicial complex [101, 81]. In these works, topological quantities, such as Betti
numbers and Euler characteristics, are considered. However, since the networks do not
exhibit the occurrence of hubs, we only see light-tailed contributions. Therefore, the
limits are Gaussian processes, or more precisely, Ornstein–Uhlenbeck processes, in the
case of [101]. Additionally, a major disadvantage of these works is that the node set is
entirely discrete. More recently, however, spatial models were also considered [79, 78].
Here, the dynamics are both of a movement and birth-death type, and the statistics
are local in nature. However, again, since the models do not allow for the occurrence
of hubs, all limits are Gaussian.

In our setting, we can go beyond this limiting behavior and prove two main
results. First, a functional central limit theorem (CLT) for the normalized edge
count in growing domains when the fourth moment of the degree distribution is finite.
Second, a convergence of the normalized edge count to a specific stable process. While
this process is not Lévy and not even Markov, we nevertheless provide a specific
representation. In both limits, the main methodological challenge is to address the
long-range correlations and heavy tails arising from the hub nodes. We now discuss
briefly the proof ideas with further details provided in Sections D.3, D.5, D.6, and D.7
below.

We start with the setting of the finite fourth moments. Here, we proceed via
the classical two steps, namely convergence of the finite-dimensional marginals and
tightness. Already for the finite-dimensional marginals, the methodology from Onaran
et al. [79] breaks down as our functionals are not local, and we cannot rely on the
stabilization CLTs from Penrose and Yukich [89]. Hence, our approach is to use the
Malliavin–Stein normal approximation from Last et al. [67], which involves delicate
computations of higher-order moments. For the tightness, we essentially use the
moment-based criterion from Billingsley [12]. The fourth moments are approached
using cumulant computations. However, since our functional can be represented as
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a difference of monotone functionals, a refinement due to Davydov [26] allows us to
simplify the tightness proof.

In the case of infinite variance, we use a different approach. We distinguish between
lightweight and heavyweight nodes. First, we show that the lightweight nodes are
negligible. The difficulty here is that the negligibility needs to be established in the
process sense, and the involved processes are not martingales. Hence, we refine our
tightness computations to achieve this goal. Then, it remains to deal with the heavy
nodes. Since the edge count is Poisson conditioned on the weight, it concentrates
around its conditional mean. This allows us to pass from a space-time process to
a classical time-varying stochastic process. While the limit process is not Lévy, the
classical proof machinery for Lévy-type convergence from Resnick [93] is flexible enough
to also be applicable in our more involved setting. More precisely, we first show that
the edge count converges to a stable process with index α ∈ (1, 2). The proof of
convergence is based on the method of moments, and tightness is shown using the
method of characteristic functions. To summarize, the main contributions of our work
are as follows.

(1) We propose a dynamic version of the random connection hypergraph model from
Paper C where nodes are born and die over time. This model, therefore, features
both higher-order interactions, spatial effects, and scale-free degree distributions.

(2) In the case of finite fourth moments of the degree distribution, we establish the
convergence of the edge count to a Gaussian process of AR(2) type. Here, the
mechanism of the random connection hypergraphs induces long-range depen-
dencies that are absent in the models considered in the literature so far. This
requires us to consider normal approximation techniques that differ significantly
from those used in earlier works.

(3) Our work is the first to establish a functional limit theorem for the edge count
in the particularly challenging case of infinite variance of the degree distribution.
The process limit is a stable process that is not Lévy and not even Markov.
Loosely speaking, it can be considered as a variant of a Lévy process where the
noise variables have a finite lifetime.

While the focus of this paper’s investigation is on the case of the edge count, we
are convinced that the methods from our work will also be helpful for studying more
complex functionals, such as simplex counts or Betti numbers. We leave these topics
for future investigations.

The rest of the paper is organized as follows. In Section D.2, we introduce the
considered model and present our main results. In Sections D.3, D.4, and D.5 we give
the proofs of Propositions D.2.1, D.2.2, and D.2.3, respectively. Next, in Sections D.6
and D.7 we present the outlines of the proofs of Theorems D.2.4 and D.2.6, respectively.
In the final part of the paper, we exhibit the proofs of the minor propositions and
lemmas used in the main proofs presented in the previous part of the paper. In
Sections D.8 we present the preliminary lemmas used frequently in the later part of the
paper. Section D.9 contains the proofs of the lemmas used for Propositions D.2.1, D.2.2,
and D.2.3. Section D.10 gives the proofs of the lemmas used to show Theorem D.2.4.
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In Section D.11, we present the proofs of the lemmas used to prove Theorem D.2.6.
Finally, in Section D.12 we conclude the paper by proving the lemmas presented in
Section D.8.

D.2 Model and main results
In this section, we present the dynamic random connection hypergraph model (DRCHM)
and state our main results. First, consider two independent Poisson point processes

P ⊆ S× T := (R× (0, 1])× (R× R+) and P ′ ⊆ S× R,

that we refer to as vertices and interactions, respectively. We will refer to the four
random variables characterizing a vertex P := (X,U,B,L) ∈ P as the position,
weight, birth time, and lifetime of the vertex P , respectively. Similarly, in the case
of an interaction P ′ := (Z,W,R) ∈ P ′, the three real random variables denote the
position, weight, and time of the interaction P ′. If the point P ∈ P or P ′ ∈ P ′ is
decorated with some indices, its coordinates (X,U,B,L) or (Z,W,R) receive the same
indices as well. Whenever we refer to a nonrandom point, we will use the notations
p := (x, u, b, ℓ) ∈ S × T and p′ := (z, w, r) ∈ S × R. We emphasize that the above
symbols are reserved for denoting the coordinates of vertices and interactions, and will
be used throughout the remainder of the paper without further explicit definition. A
pair of vertices p ∈ S× T and p′ ∈ S× R is connected if and only if the following two
conditions hold:

|x− z| ⩽ βu−γw−γ′ and b ⩽ r ⩽ b+ ℓ, (D.1)

where β > 0 and γ, γ′ ∈ (0, 1) are real parameters. Using this connection rule, we
define the bipartite graph Gbip := Gbip(P,P ′) with vertex sets P and P ′. In words,
vertices and interactions share an edge based on the smallness of their spatial distance
compared to the product of their associated weights, with small weights favoring
connections, and under the constraint that the interaction time is within the lifetime
of the vertex. Note that the parameter β influences the expected number of edges
in Gbip, and, as it will be shown later, the parameters γ, γ′ determine the power-law
exponents of the degree distribution of the vertices and interactions. In the following,
the parameter β > 0 is chosen arbitrarily. Therefore, we will not mention it explicitly
throughout the presentation of the results. The connection condition (D.1) is a natural
extension of the age-dependent random connection models from Gracar et al. [40, 41].
The spatial connection condition in (D.1) is visualized in Figure D.1. Additionally,
Figure D.2 illustrates the temporal connection condition of the DRCHM, where the
horizontal axis represents time, and the vertical axis represents position.

We assume that the Poisson point process P is stationary in the first and third
components, the second component is uniformly distributed, and the fourth component
is distributed according to PL, i.e., the intensity measure is given by

µ(dp) = µ(dx,du,db,dℓ) := d(x, u, b)PL(dℓ),

and assume that P ′ is also stationary with intensity d(z, w, r).
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{(z, w) ∈ S :
|x− z| ⩽ βu−γw−γ′}

connecting P ′-points

x

(x,u)

1

position

mark

Figure D.1: The spatial connection condition of the DRCHM. The horizontal
axis represents the position of a vertex P ∈ P , and the vertical axis represents the
mark of P . The shaded area indicates the set of points (z, w) ∈ S that connect
to P based on the connection condition (D.1).

time

position

Figure D.2: The temporal connection condition of the DRCHM based on (D.1).
The horizontal axis represents the time, and the vertical axis represents the
position. P-vertices are represented by intervals of different lengths and widths,
where the width of the interval corresponds to the weight of the vertex. Points
represent P ′-vertices, and the size of the point corresponds to the weight of the
vertex. Vertical lines mark if a pair of P- and P ′-vertices is connected.

Next, for a point p := (x, u, b, ℓ) ∈ S × T, we define the spatial part ps := (x, u)
and the temporal part pt := (b, ℓ) of p, together with their corresponding measures
dps := d(x, u) and µt(dpt) := µt(d(b, ℓ)) = dbPL(dℓ), respectively. Similarly, for a point
p′ := (z, w, r) ∈ S× R, we define its spatial part p′

s := (z, w) with the corresponding
measure dp′

s := d(z, w).
Furthermore, we consider the spatial neighborhood Ns(ps), the temporal neighbor-

hood Nt(pt; t), and the general neighborhood N(p; t) as

Ns(ps) := {(z, w) ∈ S : |x− z| ⩽ βu−γw−γ′}
Nt(pt, t) := {r ∈ R : b ⩽ r ⩽ t ⩽ b+ ℓ}
N(p; t) := Ns(ps)×Nt(pt; t).

The degree of p at time t is then defined as the number of interactions connecting to p
at time t, i.e.,

deg(p; t) :=
∑
P ′∈P ′

1{P ′ ∈ N(p; t)}.
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Using this, we define our central quantity of interest, the edge count and the normalized
edge count as

Sn( · ) :=
∑

P∈P∩(Sn×T)
deg(P ; · ) and Sn( · ) := n−1/2(Sn( · )− E[Sn( · )]),

respectively, where Sn := [0, n]× (0, 1] is an observation window of size n.
Our first statement is about the univariate normal limit of the edge count at a

fixed time point.

Proposition D.2.1 (Univariate normal limit of edge count). Let γ, γ′ < 1/2. Then,
for all t ∈ R, the normalized edge count Sn(t) converges weakly to a normal distribution,
as n→∞.

The following statement provides the limiting covariance function in the case of
thin tails.

Proposition D.2.2 (Limiting covariance function of Sn). Let γ, γ′ < 1/2. Then, for
all t1 < t2, the limiting covariance function of the edge count Sn is given by

lim
n↑∞

Cov
(
Sn(t1), Sn(t2)

)
=

(
c1 + c3 + c2(2 + t2 − t1)

)
e−(t2−t1), (D.2)

where c1 = 2β
(1−γ)(1−γ′) , c2 = (2β)2

(1−2γ)(1−γ′)2 , and c3 = (2β)2

(1−γ)2(1−2γ′) .

The limiting covariance function is an appropriate parameterization of the Matérn
covariance function [71] with smoothness parameter ν̄ = 3/2, which is the covariance
function of a continuous-time AR(2) process.

Next, we turn our attention to the multivariate normal limit of the edge counts.

Proposition D.2.3 (Multivariate normal limit of the edge count). Let γ < 1/2 and
γ′ < 1/3. Then, for all k ∈ Z+ and t1, . . . , tk ∈ R, the vector of normalized edge
counts (Sn(t1), . . . , Sn(tk)) converges weakly to a multivariate normal distribution, as
n→∞.

Functional limit theorems play a key role in understanding the dynamic behavior
of complex random systems. In the context of dynamic higher-order networks, edge
counts and their temporal evolution describe the dependencies between the heavy-tailed
degree distribution and the dynamics of the vertices. Thus, establishing functional limit
theorems for the edge counts provides insights into the interplay between the spatial
distribution and the temporal variability of these systems. Let X := {X(t) : t ⩾ 0}
denote a Gaussian process with AR(2) covariance function

Cov(X(t1), X(t2)) =
(
c1 + c3 + c2(2 + |t2 − t1|)

)
e−|t2−t1|,

where the constants are presented in Proposition D.2.2. The first main result of this
paper is as follows.

Theorem D.2.4 (Functional normal limit of edge count). Let γ, γ′ < 1/4. Then,

Sn( · ) d−−−→
n↑∞

X( · )

in the Skorokhod space D([0, 1],R).
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For the precise definition of the Skorokhod metric dSk, we refer the reader to Defini-
tion D.7.1.

Remark D.2.5. We conjecture that Theorem D.2.4 could be proved for γ ∈ (0, 1/2)
instead of γ ∈ (0, 1/4), using Lemma D.5.1 showing that the low-mark edge count
converges to 0 in probability if γ < 1/2. We refrain from presenting the proof in this
version, since this would considerably lengthen the manuscript.

When γ > 1/2, the variance of the edge count Sn(t) diverges as n → ∞ for any
t ∈ R. This means that a few vertices with very high degrees dominate the edge count,
and the distribution of Sn(t) diverges. Thus, if γ > 1/2, we need to consider a different
scaling of the edge count to obtain a nontrivial limit, and we introduce

Sn( · ) := n−γ(Sn( · )− E[Sn( · )]).

Note that the symbol Sn( · ) is reused here with different scaling from the one in
Theorem D.2.4. As the two scalings are used in different contexts—namely, the thin-
tailed case and the heavy-tailed case—they are presented in separate sections of the
paper, and we believe there is no risk of confusion. As it is shown in Theorem D.2.6 if
γ > 1/2, the finite-dimensional distributions of Sn( · ) are heavy-tailed, and thus the
limiting process is not a Gaussian process.

To state our second main result, let ν be the measure on J := [0,∞) defined by
ν([ε,∞)) := ((2β)/(1− γ′))1/γε−1/γ and let P∞ denote the Poisson point process on
J×T with intensity measure ν ⊗Leb⊗PL. Note that the component J corresponds to
the limit of the appropriately scaled size of the spatial neighborhoods of the heaviest
vertices in the sense detailed in Lemma D.7.6 later. Furthermore, define

S∗
ε ( · ) :=

∑
(J,B,L)∈P∞

J( · −B)1{J ⩾ c̃εγ}1{B ⩽ · ⩽ B + L}

S
∗
ε( · ) := S∗

ε ( · )− E[S∗
ε ( · )],

(D.3)

where c̃ := 2β/(1 − γ′) and E[S∗
ε ( · )] = c̃1/γε−(1/γ−1)/(1 − γ). Then, we have the

following stable limit theorem.

Theorem D.2.6 (Functional stable limit of edge count). Let γ > 1/2 and γ′ < 1/4.
Then, the limit S( · ) := limε↓0 S

∗
ε( · ) exists in the Skorokhod space D([0, 1],R), and

the centered edge-count process Sn( · ) converges weakly to the process S( · ) in the
Skorokhod space D([0, 1],R).

Remark D.2.7. In Section D.1, we mentioned that our limiting process S( · ) fails to
be a Lévy process or even to be Markov. After having derived a precise mathematical
expression, we now elaborate on these properties in further detail.

• The processes S∗
ε( · ) are not Markov. Loosely speaking, knowing the edge count

S∗
ε( · ) is insufficient to predict the evolution of the process. To see this, suppose

that there is a single P-vertex with 2 edges at time t. If this vertex dies, both its
edges simultaneously vanish. In contrast, if there are 2 P-vertices each with a
single edge, the process evolves more smoothly. Thus, the edge count S∗

ε( · ) alone
does not capture enough information to predict the future of the process.
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• Since the processes S∗
ε( · ) are not Markov, they cannot be a Lévy processes either.

Moreover, the increments of S∗
ε( · ) are not independent of each other. Consider

two adjacent time intervals [t, t+ ε1] and [t+ ε1, t+ ε1 + ε2] for some ε1, ε2 > 0.
P-vertices alive at time t+ ε1 are likely to remain alive at time t+ ε1 + ε2 as
well. Thus, the increments are not independent.

Note that the above properties carry over to the limiting process S( · ) as well when
taking the limit ε→ 0.

Before turning to the proofs, we briefly describe the main techniques used in each of
the following sections.

• Proof of Proposition D.2.1. We prove the convergence of the normalized
edge count to a Gaussian distribution using the theory of associated random
variables. The key tool is a CLT for sums of associated Poisson functionals.

• Proof of Proposition D.2.2. With γ < 1/2, we calculate the covariance
function of the normalized edge count Sn(t) by decomposing the edge count into
a sum of three terms and then calculating the covariance function for each part.

• Proof of Proposition D.2.3. We establish the multivariate normal limit
by applying the Malliavin–Stein approximation. More precisely, we bound the
so-called d3 distance of the distribution of the edge counts and the multivariate
normal distribution. This is done by applying [97, Theorem 1.1], which involves
the examination of cost operators.

• Proof of Theorem D.2.4. We show functional convergence in the Skorokhod
space by decomposing the edge count into differences of monotone functionals
and applying a refined tightness criterion due to Davydov [26, Theorem 2]. The
main challenge of this proof is to show the refined tightness criterion required by
the theorem.

• Proof of Theorem D.2.6. In the proof of this theorem, the main challenge
is that the variance of the edge count is infinite. For infinite-variance cases, we
split the edge count into contributions from light- and heavy-tailed nodes. We
show the light-node contribution is negligible and the heavy-node contribution
converges to a stable process that is not Markov. The proof combines conditional
expectation approximations, convergence of Poisson point processes, and vague
convergence of Lévy measures.

Before entering proofs, let us also introduce the common neighborhood of a set
of m points pm := (p1, . . . , pm) ∈ Pm, i.e.,

Ns(ps,m) :=
m⋂
i=1

Ns(ps,i), Nt(pt,m; t) :=
m⋂
i=1

Nt(ps,i; t), N(pm; t) :=
m⋂
i=1

N(pi; t),

and the associated degree

deg(pm; t) :=
∑
P ′∈P ′

1{P ′ ∈ N(pm; t)}.
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Next, for Borel sets X ,U ,B,D ⊆ R, we introduce the notations

SX := {(x, u) ∈ S : x ∈ X} SU := {(x, u) ∈ S : u ∈ U} SU
X := SX ∩ SU

TB := {(b, ℓ) ∈ T : b ∈ B} TD := {(b, ℓ) ∈ T : b+ ℓ ∈ D} TD
B := TB ∩ TD

and for the edge counts restricted to a Borel measurable spatial domain A, we introduce

SA(t) :=
∑

P∈P∩(SA×T)
deg(P ; t).

For the coordinates of the points pm ∈ Pm we use the notation xm, um, bm and ℓm.
As the Poisson point processes are stationary, we neglect the time arguments t in the
notations whenever a formula contains only one time argument. We note that for
readability, we maintain the uniqueness of the indices for the constants within each
part of the proofs.

D.3 Proof of Proposition D.2.1
In this section, we present the proof of the univariate normal limit of the normalized
edge count for a fixed time. After calculating the mean and variance of the edge count,
we apply a CLT for associated random variables to show that the edge count converges
to a Gaussian distribution. We begin with a lemma that gives the asymptotic behavior
of the mean and variance of the edge count.

Lemma D.3.1 (Asymptotic behavior of mean and variance of Sn(t)). Let t ∈ R and
γ′ ∈ (0, 1). If γ ∈ (0, 1), then limn↑∞ n−1 E[Sn(t)] <∞. Furthermore, if γ < 1/2, then
also limn↑∞ n−1 Var(Sn(t)) <∞.

We present the proofs of this and the following statement in Section D.9. The next
lemma gives the covariance of the edge counts of different spatial domains at a fixed
time.

Lemma D.3.2 (Covariance of edge counts at fixed times). Let t ∈ R, γ, γ′ < 1/2,
and let A1,A2 be two disjoint Borel sets. Then,

Cov(SA1(t), SA2(t)) ⩽ |A1|
2(1− 2γ′)

( 2β
1− γ

)2
.

In particular, the right-hand side is independent of the time t and of the set A2.

To show the Gaussian limit, we apply the CLT for associated random variables
[107, Theorem 4.4.3], which states that if T := T1, T2, . . . is a sequence of associated
i.i.d. random variables with

∑
k⩾1 Cov(T1, Tk) < ∞, then the centered and normal-

ized sum converges to a Gaussian distribution. Let us recall that a sequence of
random variables T is associated if and only if Cov(f(T1, . . . , Tk), g(T1, . . . , Tk)) ⩾ 0
for all nondecreasing functions f , g for which E[f(T1, . . . , Tk)], E[g(T1, . . . , Tk)], and
E[f(T1, . . . , Tk)g(T1, . . . , Tk)] exist [36, Definition 1.1]. To see this, we partition the
spatial coordinates of the edges into intervals of length one and define

Ti :=
∑

P∈P∩(S[i−1,i]×T)
deg(P ; t).
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Since deg(P ; t) is increasing in the Poisson process P ′, we conclude from the Harris-
FKG inequality [66, Theorem 20.4] that the sequence T1, . . . , Tk is associated. For the
covariance condition, note that we have Ti ∈ O(1) for each i ∈ N by Lemma D.3.1,
where we require that γ < 1/2. By Lemma D.3.2, we have that∑

k⩾2
Cov(T1, Tk) = Cov

(
T1,

∑
k⩾2

Tk
)
<∞.

Thus,
∑
k⩾1 Cov(T1, Tk) is finite, and Proposition D.2.1 is proved.

D.4 Proof of Proposition D.2.2
The calculation of the limiting covariance function of Sn relies on a time-interval-based
decomposition of the edge count. Without loss of generality, we may assume that
t1 ⩽ t2. First, note that

Cov(Sn(t1), Sn(t2)) = n−1 Cov(Sn(t1), Sn(t2)).

Now, to simplify the calculations, we decompose the edge count into three parts as

SA
n (t1, t2) :=

∑
P∈P∩(Sn×Tt2⩽

⩽t1
)

deg(P ; t1)

SB
n (t1, t2) :=

∑
P∈P∩(Sn×T[t1,t2]

⩽t1
)

deg(P ; t1)

SC
n (t1, t2) :=

∑
P∈P∩(Sn×Tt2⩽

⩽t2
)

∑
P ′∈P ′

1{P ′ ∈ N(P ; t2)}1{t1 ⩽ R},

where we abbreviate Tt2⩽⩽t1 = T(t2,∞)
(−∞,t1], T[t1,t2]

⩽t1 = T[t1,t2]
(−∞,t1] and Tt2⩽⩽t2 = T(t2,∞)

(−∞,t2] and
present a visualization in Figure D.3. With these notations, we have that

Sn(t1) = SA
n (t1, t2) + SB

n (t1, t2) and Sn(t2) = SA
n (t1, t2) + SC

n (t1, t2).

Rt1 t2

A
b b+ ℓ

r

B
b b+ ℓ

r

C
b b+ ℓ

r

Figure D.3: Decomposition of the covariance function
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Since, by the independence of the Poisson process, Cov(SB
n (t1, t2), SC

n (t1, t2)) = 0, the
covariance function is given by

Cov(Sn(t1), Sn(t2))

= Var
(
S

A
n(t1, t2)

)
+ Cov

(
S

A
n(t1, t2), SB

n(t1, t2)
)

+ Cov
(
S

A
n(t1, t2), SC

n(t1, t2)
)
,

and we have the following limiting behavior.

Lemma D.4.1 (Terms of the limiting covariance function of Sn(t)). Let γ, γ′ < 1/2
and t1 ⩽ t2. Then,

lim
n↑∞

Var
(
S

A
n(t1, t2)

)
= (c1 + 2c2)e−(t2−t1) + c3e−2(t2−t1)

lim
n↑∞

Cov
(
S

A
n(t1, t2), SB

n(t1, t2)
)

= c3
(
e−(t2−t1) − e−2(t2−t1))

lim
n↑∞

Cov
(
S

A
n(t1, t2), SC

n(t1, t2)
)

= c2(t2 − t1)e−(t2−t1),

where c1 = 2β
(1−γ)(1−γ′) , c2 = (2β)2

(1−2γ)(1−γ′)2 and c3 = (2β)2

(1−γ)2(1−2γ′) .

The proof of the lemma is given in Section D.9 in a slightly more complex form, since
the lemma is used in a very similar scenario in the proof of Lemma D.5.5.

Finally, by summing the above terms, we have that

lim
n↑∞

Cov
(
Sn(t1), Sn(t2)

)
=

(
c1 + c3 + c2(2 + t2 − t1)

)
e−(t2−t1),

which finishes the proof of Proposition D.2.2.

D.5 Proof of Proposition D.2.3
Next, we show that if γ < 1/2 and γ′ < 1/3, the finite-dimensional distributions of the
normalized edge count converge to a multivariate normal distribution.

To this end, we would like to apply the normal approximation result in [97,
Theorem 1.1], which uses Malliavin–Stein approximation to bound the so-called
d3 distance between the distribution of Poisson functionals and the normal distribution.
Applying this theorem requires controlling the error terms E1(n), E2(n), E3(n), detailed
below, and establishing that they converge to 0 in probability as n→∞. However, this
can only be achieved under the stricter condition γ < 1/3, since it involves showing
that an integral of the form

∫ 1
0 u

−3γ du is finite, which diverges for γ ⩾ 1/3. To
circumvent this restriction, we apply a low-mark/high-mark decomposition of the edge
count Sn. We first show that the contribution from low-mark edges is negligible, and
then analyze the high-mark edge count separately. This strategy enables us to establish
convergence to a multivariate normal distribution under the milder condition γ < 1/2,
rather than the stricter condition γ < 1/3. We begin by setting a mark un := n−2/3 as
a function of the window size n, and we decompose the edge count Sn to the sum of the
high-mark edge count S⩾

n and the low-mark edge count S⩽
n as Sn( · ) = S⩾

n ( · ) +S⩽
n ( · ),
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with
S⩾
n ( · ) :=

∑
P∈P∩(Sun⩽

n ×T)

deg(P ; · ) and

S⩽
n ( · ) :=

∑
P∈P∩(S⩽un

n ×T)

deg(P ; · ),
(D.4)

where S⩽un
n = S(0,un)

n and Sun⩽
n = S[un,1]

n . This decomposition is illustrated in Figure D.4.
The next lemma shows that the low-mark edge count S⩽

n is negligible in the sense that
its normalized version

S
⩽
n := n−1/2(

S⩽
n − E[S⩽

n ]
)

converges to 0 in probability for all times t.

Lemma D.5.1 (The low-mark edge count is negligible). Let γ, γ′ < 1/2. Then, for
any t, in probability,

S
⩽
n (t) P−−−→

n↑∞
0.

Next, we apply [97, Theorem 1.1] bounding the d3 distance between the distribution
of S⩾

n and the normal distribution. The definition of the d3 distance, a metric on the
space of random vectors, is given below.

Definition D.5.2 (d3 distance). Let H(3)
m be the set of all C3 functions h : Rm → R

such that the absolute values of the second and third partial derivatives of h are
bounded by 1 and |h(x)− h(y)| ⩽ ∥x− y∥E for all x, y ∈ Rm, where ∥ · ∥E denotes the
Euclidean norm. Then, the d3 distance of two m-dimensional random vectors X,Y
with E[∥X∥E ],E[∥Y ∥E ] <∞ is defined by

d3(X,Y ) := sup
h∈H(3)

m

∣∣E[h(X)]− E[h(Y )]
∣∣.

Note that as convergence in d3 distance implies convergence in distribution [34, Proposi-
tion 20.A.2], it is enough to show convergence in d3 distance to prove Proposition D.2.3.
Next, we introduce the cost operators that will be used to bound the d3 distance.

0 n
0

n−2/3

1

S⩾
n

S⩽
n

location

mark

Figure D.4: Decomposition of the edge count Sn to a sum of the low-mark edge
count S⩽

n and the high-mark edge count S⩾
n
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Definition D.5.3 (Cost operators). For the edge count S⩾
n , the add-one cost opera-

tors Dp and Dp′ are defined by

DpS
⩾
n (t) :=

∑
P ′∈P ′

1{P ′ ∈ N(p; t)}

Dp′S⩾
n (t) :=

∑
P∈P∩(Sun⩽

n ×T)
1{p′ ∈ N(P ; t)}.

Note that the cost operator DpS
⩾
n (t) is Poisson distributed since it counts the number

of interactions in the neighborhood of p. Similarly, the cost operator Dp′S⩾
n (t) is also

Poisson distributed, as it is the number of vertices such that p′
s ∈ Ns(Ps) and B ⩽ r

on the one hand, and this restricted Poisson process is thinned with a B-dependent
probability exp(−(t−B)).

Turning our attention to the add-two cost operators D2
p1,p2, D2

p1,p′
2
, D2

p′
1,p2

, and
D2
p′

1,p
′
2
, we have

D2
p1,p2S

⩾
n (t) = S⩾

n (t) +Dp1S
⩾
n (t) + S⩾

n (t) +Dp2S
⩾
n (t) + S⩾

n (t)
−

(
S⩾
n (t) +Dp1S

⩾
n (t) + S⩾

n (t) +Dp2S
⩾
n (t)

)
= 0

D2
p′

1,p
′
2
S⩾
n (t) = S⩾

n (t) +Dp′
1
S⩾
n (t) + S⩾

n (t) +Dp′
2
S⩾
n (t)

−
(
S⩾
n (t) +Dp′

1
S⩾
n (t) + S⩾

n (t) +Dp′
2
S⩾
n (t)

)
= 0

D2
p,p′S⩾

n (t) = 1{p′ ∈ N(p; t)}+ S⩾
n (t) +DpS

⩾
n (t) + S⩾

n (t) +Dp′S⩾
n (t)

−
(
S⩾
n (t) +DpS

⩾
n (t) + S⩾

n (t) +Dp′S⩾
n (t)

)
= 1{p′ ∈ N(p; t)},

where we note that the add-two cost operators are much simpler than the add-one
cost operators.

To apply [97, Theorem 1.1], we need to have a single Poisson process, which we
obtain by merging the two Poisson processes P and P ′ into a single Poisson process
P̃ := P ⊔ P ′, where ⊔ denotes the disjoint union of the two Poisson processes. The
point process P̃ is defined on the space Sun⩽

n ×T⊔ S×R using appropriate marks, and
its intensity measure is given by µ̃. In other words, if p̃ ∈ P̃, then

µ̃(dp̃) =
{
µ(dp̃) if p̃ ∈ Sun⩽

n × T
dp̃ if p̃ ∈ S× R.

Now, to show the multivariate convergence, we apply [97, Theorem 1.1], which we
restate here for convenience.

Proposition D.5.4 (Multivariate CLT). Let NΣ be an m-dimensional centered multi-
variate normal distribution with a positive semi-definite covariance matrix Σ ∈ Rm×m

with elements σij ∈ R. Further, let p̃ ∈ P̃ and let F :=
(
S⩾
n (t1), . . . , S⩾

n (tm)
)

denote
an m-dimensional random vector of Poisson functionals. Then, the distance d3(F,NΣ)
is upper bounded by

d3(F,NΣ) ⩽ m

2

m∑
i,j=1

∣∣σij−Cov(S⩾
n (t1), S⩾

n (t2))
∣∣+mE1(n)+m

2 E2(n)+m2

4 E3(n), (D.5)
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where the terms E1(n), E2(n), E3(n) are defined as

E1(n) :=
( m∑
i,j=1

∫ (
E

[
(D2

p̃1,p̃3S
⩾
n (t1))2(D2

p̃2,p̃3S
⩾
n (t1))2]

× E
[
(Dp̃1S

⩾
n (t2))2(Dp̃2S

⩾
n (t2))2])1/2

d(p̃1, p̃2, p̃3)
)1/2

E2(n) :=
( m∑
i,j=1

∫ (
E

[
(D2

p̃1,p̃3S
⩾
n (t1))2(D2

p̃2,p̃3S
⩾
n (t1))2]

× E
[
(D2

p̃1,p̃3S
⩾
n (t2))2(D2

p̃2,p̃3S
⩾
n (t2))2])1/2

d(p̃1, p̃2, p̃3)
)1/2

E3(n) :=
m∑
i=1

∫
E

[
|Dp̃S

⩾
n (t1)|3

]
dp̃.

In the above, the cost operators involving p̃ are defined as the number of edges of the
point p̃, in alignment with Definition D.5.3. For notational convenience, we do not
introduce further notation for the cost operators involving p̃.

We begin by setting the elements σij of the covariance matrix Σ in (D.5). To do so,
we show the below lemma, which is very similar to the covariance function of the total
edge count introduced in Proposition D.2.2.

Lemma D.5.5 (Limiting covariance function of S⩾
n ). Let γ, γ′ < 1/2. Then, the

limiting covariance function of the edge count S⩾
n is given by (D.2).

Then, we see that the first term in the right-hand side of (D.5) converges to 0 as n→∞.
Next, we show that the error terms E1(n), E2(n), E3(n) converge to 0 as n→∞. This
result is summarized in the following lemma, which we prove in Section D.9 by
examining the cost operators Dp̃, D2

p̃1,p̃3 and D2
p̃2,p̃3 .

Lemma D.5.6 (Bounds of error terms). Let γ < 1/2, γ′ < 1/3. Then, the error
terms defined in (D.5) satisfy

lim
n↑∞

(E1(n) + E2(n) + E3(n)) = 0.

In particular, this proves Proposition D.2.3.

D.6 Proof of Theorem D.2.4
Broadly speaking, apart from the convergence of finite-dimensional distributions shown
in Proposition D.2.3, we need to show that the sequence of the normalized edge counts
is tight when t ∈ [0, 1]. For this, we would like to apply [26, Theorem 2], which holds
for nondecreasing processes. The key advantage of this theorem is that to show the
moment bound for tightness, it is enough to consider time increments of size larger
than a minimum n-dependent threshold, which makes the proof more manageable.
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We would like to write the edge count as the difference Sn = S+
n − S−

n of two
nondecreasing processes. To define S+

n and S−
n , we first introduce the plus and minus

neighborhoods of a point p ∈ S× T as

N+(p; t) := Ns(ps)×N+
t (pt; t) and N−(p; t) := Ns(ps)×N−

t (pt; t),

where
N+

t (pt; t) :=
{
{r ∈ R : b ⩽ r ⩽ b+ ℓ} if b+ ℓ ⩽ t
{r ∈ R : b ⩽ r ⩽ t} if b+ ℓ > t

N−
t (pt; t) :=

{
{r ∈ R : b ⩽ r ⩽ b+ ℓ} if b+ ℓ ⩽ t
∅ if b+ ℓ > t.

Note that the spatial parts of the neighborhoods N+(p; t) and N−(p; t) are the same as
the spatial part of N(p; t), and the difference is only in the temporal part. Considering
that t ∈ [0, 1], we also define

S+
n (t) :=

∑
P∈P∩(Sn×T0⩽)

deg+(P ; t) and S−
n (t) :=

∑
P∈P∩(Sn×T0⩽)

deg−(P ; t),

where
deg+(P ; t) :=

∑
P ′∈P ′

1{P ′ ∈ N+(P ; t)} and

deg−(P ; t) :=
∑
P ′∈P ′

1{P ′ ∈ N−(P ; t)},

and T0⩽ := T[0,∞) denotes the set for which the death time b + ℓ ⩾ 0. In words,
both S+

n and S−
n consider only points from P whose lifetime [B,B + L] intersects the

temporal interval [0, 1], and deg+(P ) counts the P ′-points that

• are in the spatial neighborhood Ns(Ps) of the vertex P and

• have a birth time R in the interval [B, (B + L) ∧ t], regardless of the lifetime L.

On the other hand, deg−(P ; t) considers a point P if its lifetime ends before the time t,
and counts those interactions in P ′ that

• are in the spatial neighborhood Ns(Ps) of the vertex P and

• have a birth time R in the interval [B,B + L], regardless of the birth time B.

We show in the following lemma that the plus-minus decomposition holds.

Lemma D.6.1 (Plus-minus decomposition of edge count). We have that Sn = S+
n −S−

n .

Since the difference of tight sequences is tight, it is enough to show that [26, Theorem 2]
holds for the normalized edge counts

S
+
n := n−1/2(S+

n − E[S+
n ]) and S

−
n := n−1/2(S−

n − E[S−
n ]).

From now on, we will use the index · ± whenever a formula is valid for both · + and · −.
Unless stated otherwise, all the indices of a formula are either + or −. For ease of
reference, we summarize the statement of Davydov [26, Theorem 2] in our context.
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Theorem D.6.2 (Specialized version of Davydov’s theorem). Let an → 0 be a
sequence of positive numbers converging to 0, and set tk = kan for k = 0, 1, . . . , kn
with kn = ⌊1/an⌋ and tkn+1 = 1. Then, if S±

n ( · ) are nondecreasing processes defined
on the interval [0, 1] such that

(1) the finite-dimensional distributions of the processes S±
n ( · ) converge to the finite-

dimensional distribution of a limiting process S±
∞( · ),

(2) there exists some constants χ1, χ2 > 1 such that

E
[∣∣S±

n (t)− S±
n (s)

∣∣χ1
]
∈ O(|t− s|χ2)

for all n if |t− s| ⩾ an, and

(3) for the limit of the expected increments, we have

lim
n↑∞

max
k⩽kn

∣∣∣E[
S

±
n (tk+1)

]
− E

[
S

±
n (tk)

]∣∣∣ = 0,

then S±
∞( · ) is almost surely continuous and the sequence S±

n ( · ) converges in distribu-
tion to S±

∞( · ).

Condition (1) of Theorem D.6.2 is fulfilled for S±
n ( · ), which is stated in the next

proposition.

Proposition D.6.3 (Convergence of the finite-dimensional distributions of S±
n ). If

γ < 1/2 and γ′ < 1/3, then the finite-dimensional distributions of S±
n ( · ) converge to

a multivariate normal distribution.

The following proposition shows that Condition (2) holds for S±
n . We set χ1 := 4,

χ2 := 1 + η and an := n−1/(1+η) for some η > 0.

Proposition D.6.4 (Tightness of the sequence S±
n ). Let γ, γ′ < 1/4. Then, there

exists an η > 0 such that if |t− s| ⩾ n−1/(1+η), then

E
[∣∣S±

n (t)− S±
n (s)

∣∣4]
∈ O(|t− s|1+η)

for all n.

Finally, we turn our attention to Condition (3). Note that the absolute value can be
dropped due to the monotonicity of S±

n . Then, the condition is fulfilled if the following
lemma holds.

Lemma D.6.5 (Bound on the expectation of the increments of S±
n (t)). Let tk :=

kn1/(1+η) for any k ∈ N. Then, for all ε > 0,

lim
n↑∞

max
k⩽⌊n1/(1+η)⌋

(
n−1/2 E

[
∆±
n (tk, tk+1)

])
= 0.

The previous propositions and lemmas establish all the conditions of Theorem D.6.2
and hence we conclude that the sequence S±

n (t) is tight, and thus the functional CLT
holds for the edge count Sn(t).
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D.7 Proof of Theorem D.2.6
In this section, we outline the proof of the convergence of the edge count to a stable
limit when γ > 1/2. We divide the proof of Theorem D.2.6 into two parts.

Before delving into the proof, recall the high-mark low-mark decomposition
from (D.4) and Figure D.4, where we set un := n−2/3. To promote consistency
with the rest of the proof, we introduce the notation S(1)

n := S⩽
n for the low-mark edge

count. The normalized edge counts are defined using n−γ in place of n−1/2 as in the
case of γ < 1/2, i.e.,

S
⩾
n ( · ) := n−γ(

S⩾
n ( · )− E[S⩾

n ( · )]
)

and S
(1)
n ( · ) := n−γ(

S(1)
n ( · )− E[S(1)

n ( · )]
)
.

Next, we define the Skorokhod metric dSk used in the proof of Theorem D.2.6.

Definition D.7.1 (Skorokhod metric). Let f, g ∈ D([0, 1],R). The Skorokhod metric
dSk(f, g) is defined as

dSk(f, g) := inf
λ

(
∥λ− I∥ ∨ ∥f ◦ λ−1 − g∥

)
,

where the infimum is over all homeomorphisms λ from [0, 1] to itself, I is the identity
map and ∥ · ∥ is the supremum norm on [0, 1].

The main steps of the first part of the proof of Theorem D.2.6 are as follows. In
Step 1, we show that the normalized high-mark edge count is negligible, which is the
following statement whose proof, together with the proofs of the remaining statements
in this section, is given in Section D.11.

Proposition D.7.2 (High-mark edge count is negligible). Let γ > 1/2 and γ′ < 1/4.
Then,

S
⩾
n ( · ) d−−−→

n↑∞
0

in the Skorokhod space D([0, 1],R),

In Step 2, after neglecting the high-mark edges, we approximate the low-mark edge
count S(1)

n by a sum of conditional expectations S(2)
n of the neighborhoods of the points,

defined as
S(2)
n ( · ) :=

∑
P∈P∩(S⩽un

n ×T0⩽)
E

[
deg(P ; · )

∣∣ P ]
S

(2)
n ( · ) := n−γ(

S(2)
n ( · )− E

[
S(2)
n ( · )

])
.

Remark D.7.3. We crucially note that S(2)
n is devoid of the spatial correlations of

the neighborhoods.

The following proposition states that S(2)
n is indeed an approximation in the sense that

the difference between the two edge counts is negligible.

Proposition D.7.4 (Approximation of the low-mark edge count). Let γ > 1/2 and
γ′ ∈ (0, 1). Then, ∥∥S(1)

n − S
(2)
n

∥∥ P−−−→
n↑∞

0,

in probability.
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This part of the proof is concluded after approximating Sn by S(2)
n .

In the second part of the proof, we show that the approximated low-mark edge
count S(2)

n converges in distribution to S as n → ∞, where S is defined in the
statement of Theorem D.2.6. Before presenting the remaining steps of the proof, recall
the definition of the measure ν, the Poisson point process P∞, and that of S( · ) from
the statement of Theorem D.2.6. Also recall that

E[deg(P ; t) | P ] = |N(P ; t)| = |Ns(Ps)||Nt(Pt; t)| = c̃U−γ(t−B)1{B ⩽ t ⩽ B + L},

where c̃ = 2β/(1 − γ′). Then, for all window sizes n and ε > 0, we define the edge
count S(3)

n,ε together with its centered, normalized version as

S(3)
n,ε( · ) :=

∑
P∈P∩(Sn×T)

E[deg(P ; · ) | P ]1{U ⩽ 1/(εn)}

S
(3)
n,ε( · ) := n−γ(

S(3)
n,ε( · )− E[S(3)

n,ε( · )]
)
.

Furthermore, recall the definition of the edge count S∗
ε and its centered version S∗

ε

from (D.3). Note that S(3)
n,ε and S∗

ε are defined on different probability spaces. The
second part of the proof is divided into three steps, Steps 3, 4, and 5, which are
illustrated in Figure D.5, and based on arguments presented in [93, Sections 5.5
and 7.2]. The approach is summarized as follows.

• In Step 3, we show that S(3)
n,ε converges to S(2)

n in D([0, 1],R) as ε→ 0 uniformly
for all n. More specifically, we show that limε↓0 lim supn↑∞ P

(
dSk

(
S(3)
n,ε, S

(2)
n

)
>

δ
)

= 0 for all δ > 0. After bounding the Skorokhod distance dSk with the
supremum norm, we apply the plus-minus decomposition of the edge count S(3)

n,ε

to show that the supremum norm of the difference converges to 0 in probability.
The main idea is to decompose the edge count S(3)

n,ε into a sum of a martingale
and a continuous process that can be written as a sum of integrals. Note that
while other decompositions, such as the Doob–Meyer decomposition, are possible,
it is unclear if they satisfy the properties we need in the proof.

0 n
0

1
(εn)

1

S(3)
n,ε

location

mark

goal

ε
→

0
(∀
n

)
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Step 4

St
ep
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ε
→

0

S
(2)
n

S
(3)
n,ε
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S
∗
ε

Figure D.5: Main steps of the second part of the proof of Theorem D.2.6. Step 3
shows that S(3)

n,ε converges to S(2)
n as ε → 0 uniformly for all n. Step 4 shows

convergence of S(3)
n,ε to S∗

ε as n → ∞. Finally, Step 5 shows that S∗
ε converges

to S as ε→ 0.
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• In Step 4, we show that the edge count S(3)
n,ε with marks less than (εn)−1 converges

in distribution to S∗
ε in D([0, 1],R) as n→∞. We follow the arguments in [93,

Section 7.2] to show the above convergence. The main difference in our proof is
that we need to show the continuity of the summation functional S∗

ε with respect
to the Skorokhod metric. This is done in Proposition D.7.7, and its proof differs
from the arguments in [93, Section 7.2.3].

• Finally, in Step 5, we will see that S∗
ε → S almost surely as ε→ 0 in D([0, 1],R).

In this step, we follow the proof of [93, Proposition 5.7]. While the proof presented
in [93, Proposition 5.7] relies on the continuous version of Kolmogorov’s inequality
[93, Lemma 5.3], we need to apply Lemma D.7.10, which shows that the sequence
S∗
εn

is Cauchy in probability with respect to the supremum norm.

Step 3. We begin with Step 3. Since the Skorokhod metric dSk on [0, 1] is bounded
by the supremum metric, we have that

lim
ε↓0

lim sup
n↑∞

P
(
dSk

(
S

(3)
n,ε, S

(2)
n

)
> δ

)
⩽ lim

ε↓0
lim sup
n↑∞

P
(∥∥S(3)

n,ε − S
(2)
n

∥∥ > δ
)
. (D.6)

To show that the right-hand side is 0, we turn again to the plus-minus decomposition
S(3)
n,ε = S(3),+

n,ε − S(3),−
n,ε , i.e.,

S(3),±
n,ε ( · ) :=

∑
P∈P∩(S⩽1/(εn)

n ×T0⩽)

E[deg±(P ; · ) | P ] =
∑

P∈P∩(S⩽1/(εn)
n ×T0⩽)

|N±(P ; · )| and

S
(3),±
n ( · ) := n−γ(

S(3),±
n,ε ( · )− E[S(3),±

n,ε ( · )]
)
.

To show that the right-hand side of (D.6) is 0, we verify the convergence result for the
plus and minus cases separately.

Proposition D.7.5 (Convergence of S(3),±
n,ε to S(2),±

n ). Let γ > 1/2 and γ′ ∈ (0, 1).
Then,

lim sup
n↑∞

∥∥∥S(3),±
n,ε − S(2),±

n

∥∥∥ P−−→
ε↓0

0

in probability.

This proposition is the main result of Step 3, and it shows that the edge count of the
heaviest vertices approximates the total edge count.

Step 4. The proof of Step 4 begins with a lemma that shows the convergence of the
scaled size n−γ |Ns(Ps)| to a measure.

Lemma D.7.6 (Convergence to a measure). Let γ > 1/2 and γ′ ∈ (0, 1). Then, we
have that

nP
(
n−γ |Ns(Ps)| ∈ ·

) v−−−→
n↑∞

ν( · ),

where v−→ denotes vague convergence, and ν is the measure defined by ν([a,∞)) :=
c̃1/γa−1/γ, i.e., the right-tail probabilities are regularly varying with tail index −1/γ.
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We now turn to the total contributions of the points to S(3)
n,ε. The contributions

n−γ(|N(P ; t)| − E[|N(P ; t)|]) of single points to the sum S(3)
n,ε(t) are i.i.d. random

variables due to the properties of the Poisson process. By Lemma D.7.6, we have that∑
P∈P∩(Sn×T)

δ(n−γ |Ns(Ps)|,B,L)
d−−−→

n↑∞
PPP(ν ⊗ Leb⊗ PL),

where PPP(ν ⊗ Leb⊗ PL) is a Poisson point process on J× T with intensity measure
ν⊗Leb⊗PL. To examine the edge count S(3)

n,ε, we restrict the domain of the marks (0, 1]
to (0, 1/(εn)], which requires that n−γ |Ns(Ps)| ⩾ c̃εγ . Furthermore, we restrict the
domain of the points to K := J× T0⩽

⩽1, ensuring that the intervals [B,B + L] intersect
the interval [0, 1]. The domain of the marks is visualized in Figure D.6. Then, we
consider the summation functional∑
(J,B,L)∈P∞∩([c̃εγ ,∞)×T)

δ(J,B,L) 7→
∑

(J,B,L)∈P∞

J( · −B)1{J ⩾ c̃εγ}1{B ⩽ · ⩽ B + L}.

(D.7)
The next result shows the continuity of the above functional. To state it, let Kε :=
{(j, b, ℓ) ∈ J × T0⩽

⩽1 : j ⩾ c̃εγ} be the domain of the points contributing to the edge
count, see again Figure D.6. As in [93], we consider Kε to be endowed with the
topology where, in the first component, we use the one-point compactification at ∞.
That means, we set J = (0,∞]. Then, the topology of the space Kε is the one of
the space J × T0⩽

⩽1 with J compactified at ∞ in the first coordinate. Furthermore,
let Nloc(J× T) denote the family of point measures on locally finite subsets of J× T
and consider the summation functional χ : Nloc(J× T)→ D([0, 1],R) defined as

χ(η)(t) := χ
( ∑

(j,b,ℓ)∈η
δ(j,b,ℓ)

)
(t) := χ

( ∑
(j,b,ℓ)∈η

δ(j,b,ℓ)
(

· ∩Kε
))

(t)

:=
∑

(j,b,ℓ)∈η
j(t− b)1{j ⩾ c̃εγ}1{b ⩽ t ⩽ b+ ℓ}.

Proposition D.7.7 (Continuity of summation functional). The summation func-
tional χ(η)(t) is almost surely continuous with respect to the distribution of P∞.

(b, ℓ)

0 1

M

B

L

Figure D.6: Domain of the endpoints of the intervals intersecting with the time
interval [0, 1]
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Note that if j = n−γ |Ns(ps)| for a point p ∈ Sn ×T in Proposition D.7.7, then the first
indicator is equivalent to u ⩽ 1/(εn). From Proposition D.7.7, we get the following
convergence in D([0, 1],R),

n−γS(3)
n,ε( · ) d−−−→

n↑∞
S∗
ε ( · ).

The following lemma shows that the expectation of the edge count S∗
ε is finite.

Lemma D.7.8 (Expectation of S∗
ε ). Let γ > 1/2. Then,

E
[
S∗
ε

]
= c̃

1− γ ε
−(1−γ).

Then, for the centered and scaled edge count S(3)
n,ε, we have the convergence

in D([0, 1],R),
S

(3)
n,ε( · ) d−−−→

n↑∞
S

∗
ε( · ).

Step 5. Finally, in Step 5, we show that S∗
ε → S in D([0, 1],R) as ε → 0 almost

surely. As a preliminary result, we first follow closely Resnick [93, Section 5.5.1] to
show that almost sure convergence happens for all fixed time points t ∈ [0, 1] as ε→ 0.

Lemma D.7.9 (Convergence of S∗
ε(t) for fixed time points). For a fixed t ∈ [0, 1], we

have that
S

∗
ε(t)

a.s.−−→
ε↓0

S(t).

Following the proof of [93, Proposition 5.7], we aim to show that the convergence is
almost surely uniform. Before we do that, we need to show that the sequence S∗

εn
is

Cauchy in probability with respect to the supremum norm in the sense stated below.

Lemma D.7.10 (S∗
εn

is Cauchy in probability). Let εk → 0 be a decreasing sequence
as k →∞. Then,

sup
n,m⩾N

∥∥S∗
εn
− S∗

εm

∥∥ P−−−→
N↑∞

0.

Next, in Proposition D.7.11, we present the main result of this step. We show that
there exists S with almost all paths in D([0, 1],R) such that limε↓0∥S∗

ε−S∥ = 0 almost
surely, which is done by showing that the sequence S∗

εn
is almost surely Cauchy with

respect to the supremum norm on [0, 1].

Proposition D.7.11 (S∗
εn

is Cauchy almost surely). Let εk → 0 be a decreasing
sequence as k →∞. Then,

sup
n,m⩾N

∥∥S∗
εn
− S∗

εm

∥∥ a.s.−−−→
N↑∞

0.

By Proposition D.7.11, there exists S such that limε↓0∥S∗
ε − S∥ = 0 almost surely.

Furthermore, the limit S is in D([0, 1],R) by Resnick [93, Lemma 5.2].
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D.8 Preliminary lemmas
Before presenting the proofs of the main propositions and lemmas, we collect some
minor results that are used frequently in the proofs later. We begin with a lemma
regarding the size of the spatial neighborhoods of points.

Lemma D.8.1 (Size of spatial neighborhoods). Let γ, γ′ ∈ (0, 1).

(a) For all ps ∈ S, we have that

|Ns(ps)| =
2β

1− γ′u
−γ .

(b) For all ps,1, ps,2 ∈ S, we have that

|Ns(ps,1, ps,2)| ⩽ 2(2β)1/γ′

1− γ′ |x1 − x2|−(1/γ′−1)u
−γ/γ′

1 u
−γ/γ′

2 .

(c) For all u− ∈ [0, 1], the size of the spatial neighborhood of a point p′ is given by∫
Su−⩽

1{p′
s ∈ Ns(ps)}dps = 2β

1− γw
−γ′(1− u1−γ

−
)
.

The following lemma concerns the integrals of spatial neighborhoods.

Lemma D.8.2 (Integrals of spatial neighborhoods Ns(ps)). We have the following.

(a) Let γ, γ′ ∈ (0, 1), A ⊆ R a Borel set and α ⩾ 0. Then, if γ < 1/α,∫
SA

|Ns(ps)|α dps =
( 2β

1− γ′

)α |A|
1− αγ .

If γ ∈ (0, 1) and u− ∈ (0, 1], then

∫
Su−⩽

A

|Ns(ps)|α dps =


(

2β
1−γ′

)α |A|
1−αγ

(
1− u1−αγ

−

)
if γ ̸= 1/α(

2β
1−γ′

)α
|A| log

(
u−1

−
)

if γ = 1/α.

(b) Let γ ∈ (0, 1) and γ′ < 1/m. Then,

1
n

∫
Sm

n

|Ns(ps,m)|dps,m ↗
(2β)m

(1− γ)m(1−mγ′) as n→∞,

where ↗ denotes convergence from below.
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(c) Let un = n−b denote an n-dependent mark with b ∈ (0, 1). Furthermore, let
γ ∈ (0, 1) and γ′ < 1/m. Then,

1
n

∫(
Sun⩽

n

)m |Ns(ps,m)|dps,m ↗
(2β)m

(1− γ)m(1−mγ′) as n→∞.

(d) Let m > 0 be a positive integer, let γ ∈ (0, 1) and γ′ < 1/m. Then,∫
S

(∫
Sn

1{p′
s ∈ Ns(ps)}dps

)m
dp′

s ⩽
( 2β

1− γ

)m n

1−mγ′ .

(e) We set m1,m2,m3 ∈ {0, 1, 2, . . .}, γ < (1+(m1∨m2)+m3)−1 and γ′ < (2+m3)−1.
Then,∫∫

S2
n

|Ns(ps,1)|m1 |Ns(ps,1, ps,2)||Ns(ps,2)|m2 |x1 − x2|m3 d(x1, u1) d(x2, u2)

⩽ c
(
c′ + c′′)n
c = (2β)2+m1+m2+m3

(1 +m3)(1− γ′)m1+m2(1− (2 +m3)γ′)

c′ = 1
(1− (1 +m1)γ)(1− (1 +m2 +m3)γ)

c′′ = 1
(1− (1 +m2)γ)(1− (1 +m1 +m3)γ) .

Note that the bound is always nonnegative.

(f) We set m1,m2,m3 ∈ {0, 1, 2, . . .}, γ > 1/2, γ′ < (2 + m3)−1 and u− ∈ (0, 1] a
mark. Then,∫∫(

Su−⩽
n

)2 |Ns(ps,1)|m1 |Ns((x1, u1), (x2, u2))||Ns((x2, u2))|m2

× |x1 − x2|m3 d(x1, u1) d(x2, u2)

⩽ c
(
|c′|u−((1+m2+m3)γ−1)+−((1+m1)γ−1)+

−

+ |c′′|u−((1+m1+m3)γ−1)+−((1+m2)γ−1)+
−

)
n,

where ( · )+ := · ∨ 0, the constants c, c′ and c′′ are defined as in Part (e) of this
lemma.

The next lemma is about the size of the temporal neighborhood of points.

Lemma D.8.3 (Size of temporal neighborhoods). Let t ∈ R.

(a) For all pt = (b, ℓ) ∈ T, we have that

|Nt(pt; t)| = (t− b)1{b ⩽ t ⩽ b+ ℓ}.
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(b) For all pt = (b, ℓ) ∈ T and r ∈ R, the size of the temporal neighborhood of a
point p′ is given by∫

T
1{r ∈ Nt(pt; t)}µt(dpt) = 1{r ⩽ t}e−(t−r).

The following lemma characterizes some of the temporal integrals that will be used
in the proof.

Lemma D.8.4 (Integrals of temporal neighborhoods Nt(pt; t)). We have the following.

(a) For all α > 0 we have that∫
T
|Nt(pt; t)|α µt(dpt) = Γ(α+ 1).

(b) For all t ∈ R, the integral of the common temporal neighborhood of the points pm
is given by ∫

⊗m
i=1Ti

∣∣∣ m⋂
i=1

Nt(pi; ti)
∣∣∣(dbmP⊗m

L (dℓm)
)

=
∫
R

m∏
i=1

(∫
Ti

1{r ∈ Nt(pt; t)}µt(dpt)
)

dr.

Furthermore, if Ti = T and ti = t for all indices i ∈ {1, . . . ,m}, then the
right-hand side equals 1/m.

(c) For all α1, α2 > 0, we have that∫
T

∫
T
|Nt(ps,1; t1)|α1 |Nt(ps,1; t1) ∩Nt(ps,2; t2)||Nt(ps,2; t2)|α2ps,2 µt(dps,1)

⩽ Γ(α1 + 1)Γ(α2 + 2).

(d) For all α > 0, we have that∫
R

(∫
T
1{r ∈ Nt(pt; t)}µt(dpt)

)α
dr = 1

α
.

Next, we introduce notation for the differences of temporal neighborhoods of a
point p between two times t1 < t2,

δt1,t2(N±
t (pt)) := N±

t (pt; t2) \N±
t (pt; t1)

δt1,t2(N±(p)) := N±(p; t2) \N±(p; t1) = Ns(ps)× δt1,t2(N±
t (pt; t)).

(D.8)

Then, the size of the temporal plus-minus neighborhoods is given in the next lemma.

Lemma D.8.5 (Size of N±
t (pt; t)). Let t, t1, t2 ∈ [0, 1] be fixed.
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(a) The size of the temporal neighborhoods is given by

|N+
t (pt; t)| = (((b+ ℓ)∧ t)− b)1{b ⩽ t} and |N−

t (pt; t)| = ℓ1{b+ ℓ ⩽ t}.

(b) The change of the temporal neighborhood of a point p between t1 < t2 is given by∣∣δt1,t2(N+
t (pt; t2))

∣∣ =
(
((b+ ℓ) ∧ t)− (b ∨ t1)

)
1{b ⩽ t2}1{t1 ⩽ b+ ℓ} and∣∣δt1,t2(N−

t (pt; t2))
∣∣ = (t1 − b)1{b ⩽ t1 ⩽ b+ ℓ ⩽ t2}.

(c) The size of the temporal neighborhood of a point p′ is given by∫
T0⩽

1{r ∈ N+
t (pt; t)}µt(dpt) = 1{r ⩽ 0}e−(−r) + 1{0 ⩽ r ⩽ t} and∫

T0⩽
1{r ∈ N−

t (pt; t)}µt(dpt)

= 1{r ⩽ 0}
(
er − e−(t−r)) + 1{0 ⩽ r ⩽ t}

(
1− e−(t−r)).

The next lemma is about the integrals of the temporal plus-minus neighborhoods.

Lemma D.8.6 (Integrals of N±
t (pt; t)). Let t, t1, t2 ∈ [0, 1] be fixed.

(a) For all integers m ⩾ 1, we have that∫
T0⩽
|N+

t (pt; t)|m µt(dpt) = m!(t+ 1) and∫
T0⩽
|N−

t (pt; t)|m µt(dpt) = m!t.

(b) For all α ⩾ 0, we have that
∫
T0⩽ |N±

t (pt; t)|α µt(dpt) ⩽ 2ct + Γ(α + 1), where
c := (2α)αe−α.

(c) For all integers m ⩾ 1, we have that
∫
T0⩽

∣∣δt1,t2(N±
t (pt))

∣∣m µt(dpt) ⩽ (t2 − t1)m.

(d) For all integers m ⩾ 1, we have that∫
R

(∫
T0⩽

1{r ∈ δt1,t2(N±
t (pt))}µt(dpt)

)m
dr = t2 − t1.

(e) For all integers m ⩾ 1, the integral of the intersection of the neighborhoods is
given by ∫∫(

T0⩽
)m |N+

t (pt,m; t)|µ⊗m
t (dpt,m)

=
∫
R

(∫
T0⩽

1{r ∈ N±
t (pt; t)}µt(dpt)

)m
dr ⩽ 1/m+ t.
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(f) For all α1, α2 ⩾ 0, we have that∫∫(
T0⩽
⩽1

)2 |N±
t (ps,1; t1)|α1 |N±

t (p1; t1) ∩N±
t (ps,2; t2)|

× |N±
t (ps,2; t2)|α2 µt(dps,1)µt(dps,2) <∞.

D.9 Proofs of the lemmas used for
Propositions D.2.1, D.2.2, and D.2.3

In this section, we assume that γ < 1/2, and we do not explicitly mention this condition
in the proofs.

Proofs of Lemmas D.3.1 and D.3.2

First, we present the proofs of the lemmas used in the proofs of Propositions D.2.1.
The proofs are based on the application of the Mecke formula [66, Theorem 4.1] and
the independence property [66, Definition 3.1 (ii)] of the Poisson process.

Proof of Lemma D.3.1. The mean of the edge count Sn(t) is given by

E[Sn(t)] = E
[ ∑
P∈P∩(Sn×T)

deg(P )
]

=
∫
Sn×T

|N(p)|µ(dp) = 2β
(1− γ)(1− γ′)n,

where we used the Mecke formula in the second step and Lemmas D.8.2 (a) and D.8.4 (a)
with α = 1 in the third step. Next, we calculate the variance using the Mecke formula:

Var(Sn(t)) = E
[ ∑

(P1,P2)∈(P∩(Sn×T))2
̸=

deg(P1) deg(P2)
]

− E
[ ∑
P∈P∩(Sn×T)

deg(P )
]2

+ E
[ ∑
P∈P∩(Sn×T)

deg(P )2
]

=
∫
Sn×T

E[deg(p)2]µ(dp)

+
∫∫

(Sn×T)2
Cov(deg(p1),deg(p2))µ(dp1)µ(dp2).

(D.9)

The above formula represents the variance of a U -statistic, which was also calculated
in a more general setting in [92, Lemma 3.5]. We can see that in the first step, the
variance is determined by the last term, where P = P1 = P2, since the first two terms
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cancel. For the first term, we have

E[deg(p)2] = E
[( ∑
P ′∈P ′

1{P ′ ∈ N(p)}
)2]

= E
[ ∑
P ′∈P ′

1{P ′ ∈ N(p)}
]

+ E
[ ∑

{P ′
1,P

′
2}∈(P ′)2

̸=

1{P ′
1 ∈ N(p)}1{P ′

2 ∈ N(p)}
]

=
∫
S×R

1{p′ ∈ N(p)} dp′ +
(∫

S×R
1{p′ ∈ N(p)}dp′

)2
= |N(p)|+ |N(p)|2.

(D.10)
The first term is the integral of the above expression:

lim
n↑∞

1
n

∫
Sn×T

E[deg(p)2]µ(dp) =
2∑

k=1
lim
n↑∞

1
n

∫
Sn

|Ns(ps)|k dps

∫
T
|Nt(pt)|k µt(dpt)

= 2β
(1− γ)(1− γ′) + (2β)2

(1− 2γ)(1− γ′)2 ,

where we applied Lemmas D.8.2 (a) and D.8.4 (a), and it is required that γ < 1/2.
For the second term, we have

Cov(deg(p1), deg(p2))

= E
[ ∑
P ′∈P ′

1{P ′ ∈ N(p1, p2)}
]

+ E
[ ∑

(P ′
1,P

′
2)∈P ′2

̸=

1{P ′
1 ∈ N(p1), P ′

2 ∈ N(p2)}
]

− E
[ ∑
P ′∈P ′

1{P ′ ∈ N(p1)}
]
E

[ ∑
P ′∈P ′

1{P ′ ∈ N(p2)}
]

=
∫
S×R

1{p′ ∈ N(p1, p2)} dp′ = |N(p1, p2)|.

Note that just as in the case of the variance, the covariance is determined by the term
in which P ′ = P ′

1 = P ′
2. This insight will be used multiple times in the subsequent

calculations. As |N(p1, p2)|, factorizes to the spatial and temporal parts, applying
Lemmas D.8.2 (b) and D.8.4 (b) with m = 2, we have for the second term that

lim
n↑∞

1
n

∫∫
(Sn×T)2

Cov(deg(p1), deg(p2))µ(dp1)µ(dp2)

= lim
n↑∞

1
n

∫∫
(Sn×T)2

|N(p1, p2)|µ(dp1)µ(dp2) = 2β2

(1− γ)2(1− 2γ′) ,

and we require that γ′ < 1/2. Combining the two terms, we have that the variance is
asymptotically equal to n, more precisely,

lim
n↑∞

1
n

Var(Sn(t)) = 2β
(1− γ)(1− γ′) + (2β)2

(1− 2γ)(1− γ′)2 + 2β2

(1− γ)2(1− 2γ′) ,

as desired.
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Proof of Lemma D.3.2. By the definition of the covariance,

Cov(SA1(t), SA2(t)) = E
[ ∑
P1∈P∩(SA1 ×T),
P2∈P∩(SA2 ×T)

deg(P1; t) deg(P2; t)
]

− E
[ ∑
P1∈P∩(SA1 ×T)

deg(P1; t)
]
E

[ ∑
P2∈P∩(SA2 ×T)

deg(P2; t)
]
.

As A1, A2 are disjoint, P1 ̸= P2, and thus an application of the Mecke formula yields

Cov(SA1(t), SA2(t)) =
∫
SA1 ×T

∫
SA2 ×T

Cov(deg(p1; t), deg(p2; t)) dp2 dp1.

For the integrand, by the definition of deg(p), we have that

Cov(deg(p1; t),deg(p2; t)) = E
[ ∑
P ′∈P ′

1{P ′ ∈ N(p1, p2; t)}
]

+ E
[ ∑

(P ′
1,P

′
2)∈(P ′)2

̸=

1{P ′
1 ∈ N(p1; t)}1{P ′

2 ∈ N(p2; t)}
]

− E
[ ∑
P ′

1∈P ′

1{P ′
1 ∈ N(p1; t)}

]
E

[ ∑
P ′

2∈P ′

1{P ′
2 ∈ N(p2; t)}

]
.

The last two terms cancel by the independence of the Poisson process P ′, and the
Mecke formula gives

Cov(deg(p1; t), deg(p2; t)) =
∫
S×R

1{p′ ∈ N(p1, p2; t)} dp′ = |N(p1, p2; t)|.

Then,

Cov(SA1(t), SA2(t)) =
∫
SA1 ×T

∫
SA2 ×T

|N(p1, p2; t)|dp2 dp1

⩽
∫
SA1 ×T

∫
S×T
|N(p1, p2; t)|dp2 dp1 ⩽

|A1|
2(1− 2γ′)

( 2β
1− γ

)2
,

where we applied Lemmas D.8.2 (b) and D.8.4 (b).

Proofs of Lemmas D.5.1, D.5.5, D.4.1, and D.5.6

Finally, we present the proofs of the lemmas used in the proof of Proposition D.2.3.
In Lemma D.5.1, we show that the low-mark edge count converges to 0 in probability.

Proof of Lemma D.5.1. Our proof strategy is applying Chebyshev’s inequality and
bounding the variance of S⩽

n (t). Let δ > 0 arbitrary. Then, applying Chebyshev’s
inequality yields

P
(
S
⩽
n (t) > δ

)
⩽ δ−2n−1 Var

(
S⩽
n (t)

)
.
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Thus, it is enough to show that Var(S⩽
n (t)) = o(n). We bound the variance by applying

the Mecke formula, which, similarly to the proof of Lemma D.3.1, gives

Var(S⩽
n (t)) =

∫
S⩽un

n ×T
E[deg(p; t)2]µ(dp)

+
∫∫

(S⩽un
n ×T)2

Cov(deg(p1; t), deg(p2; t))µ(dp1)µ(dp2).

Using (D.10), we have for the first term∫
S⩽un

n ×T
E[deg(p; t)2]µ(dp) =

∫
S⩽un

n ×T
|N(p; t)|2 + |N(p; t)|µ(dp)

= c1nu
1−2γ
n + c2nu

1−γ
n ,

where c1 = (2β)2/((1− 2γ)(1− γ′)2) and c2 = 2β/((1− γ)(1− γ′)). In the second step,
we used Lemma D.8.4 (a) to bound the temporal part by 1 for both terms and used
Lemma D.8.2 (a) twice for the spatial parts, once with u− = 0 and once with u− = un.
Substituting un = n−2/3, we have that the first term is of order O(n1−2/3(1−2γ)) ⊂ o(n),
and the second term is of order O(n1−2/3(1−γ)) ⊂ o(n) as well.

Next, we calculate the covariance term by following the proof of Lemma D.3.1:∫∫
(S⩽un

n ×T)2
Cov(deg(p1; t), deg(p2; t))µ(dp1)µ(dp2)

=
∫∫

(S⩽un
n ×T)2

|N(p1, p2; t)|µ(dp1)µ(dp2).

We bound the temporal part by 2 using Lemma D.8.4 (b). Requiring γ′ < 1/2, we
bound the spatial part using Lemma D.8.2 (c) and (b). Then,∫∫

(S⩽un
n ×T)2

Cov(deg(p1; t), deg(p2; t))µ(dp1)µ(dp2) ⩽ c3nu
2(1−γ)
n + c4nu

1−γ
n ,

where c3 = 2(2β)2/((1− γ)2(1− 2γ′)) and c4 = 4β/((1− γ)(1− γ′)). The first term is
of order O(n1−4/3(1−γ)) ⊂ o(n), and the second term is of order O(n1−2/3(1−γ)) ⊂ o(n)
as well. Thus, the covariance term is of order O(n).

The covariance function of the high-mark edge count S⩾
n was calculated in

Lemma D.5.5, whose proof is similar to the proof of Proposition D.2.2.

Proof of Lemma D.5.5. The statement and the proof of Lemma D.5.5 are almost
identical to the proof of Proposition D.2.2. The only difference is that we consider the
high-mark edge count S⩾

n instead of the total edge count Sn, which entails that we
need to consider Sun⩽

n in place of S.
Using the same time interval-based decomposition of the edge count S⩾

n as we de-
fined in the proof of Proposition D.2.2, the covariance function can again be decomposed
into three terms. Employing Lemma D.4.1 finishes the proof of Lemma D.5.5.

Next, we show the proof of the lemma used in the proofs of Proposition D.2.2 and
Lemma D.5.5, which determined the terms of the limiting covariance functions of the
edge counts Sn(t) and S⩾

n (t).
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Proof of Lemma D.4.1. We exhibit the terms of the covariance function of the high-
mark edge count S⩾

n when γ < 1/2. However, using Lemma D.8.2 (b) instead of
Lemma D.8.2 (c), the below calculations are also valid for the limiting covariance
function of the total edge count Sn. As Lemma D.8.2 (b) gives a specific limit instead
of an upper bound, the results of this proof are also accurate when we apply the steps
for Sn.

Term Var(SA
n(t1, t2)). First, note that Var(SA

n(t1, t2)) = n−1 Var(SA
n (t1, t2)). Then,

Var(SA
n (t1, t2)) =

∫
Sun⩽

n ×Tt2⩽
⩽t1

E
[
deg(p; t1)2]

µ(dp)

+
∫∫(

Sun⩽
n ×Tt2⩽

⩽t1

)2 Cov
(
deg(p1; t1), deg(p2; t1)

)
µ(dp1)µ(dp2),

where, similarly to the variance term in Section D.3, we kept only the term in which
the points are the same in the expansion of the variance, and used Mecke’s formula.
Using (D.10), we have that∫

Sun⩽
n ×Tt2⩽

⩽t1

E
[
deg(p; t1)2]

µ(dp) =
∫
Sun⩽

n ×Tt2⩽
⩽t1

2∑
k=1
|N(p; t1)|k µ(dp)

=
2∑

k=1

∫
Sun⩽

n

|Ns(ps)|k dps

∫
Tt2⩽
⩽t1

|Nt(pt; t1)|k µt(dpt)

= c1n
(
1− u1−γ

n

) ∫ t1

−∞

∫ ∞

t2−b
(t1 − b)PL(dℓ) db

+ c2n
(
1− u1−2γ

n

) ∫ t1

−∞

∫ ∞

t2−b
(t1 − b)2 PL(dℓ) db

= n
(
c1(1− u1−γ

n ) + 2c2(1− u1−2γ
n )

)
e−(t2−t1),

where c1 = 2β/((1− γ)(1− γ′)), c2 = (2β)2/((1− 2γ)(1− γ′)2) are positive constants.
Substituting un = n−2/3, we have that

lim
n↑∞

1
n

∫
Sun⩽

n ×Tt2⩽
⩽t1

E
[
deg(p; t1)2]

µ(dp) =
(
c1 + 2c2

)
e−(t2−t1).

The covariance term is calculated the same as in the variance calculation of the edge
count Cov

(
deg(p1; t1),deg(p2; t1)

)
= |N(p1, p2; t1)|. After applying Lemma D.8.2 (c)

and Lemma D.8.4 (b) with m = 2, we have that

lim
n↑∞

1
n

∫∫(
Sun⩽

n ×Tt2⩽
⩽t1

)2 Cov
(
deg(p1; t1),deg(p2; t1)

)
µ(dp1)µ(dp2) = Is × It

Is := lim
n↑∞

1
n

∫∫
(Sun⩽

n )2

∣∣Ns(ps,1, ps,2)
∣∣ dps,1 dps,2 = lim

n↑∞
c3

(
1− u1−γ

n

)2 = c3

It :=
∫
R

(∫
Tt2⩽
⩽t1

1{r ∈ Nt(pt; t1)}µt(dpt)
)2

dr = 1
2e−2(t2−t1),

where c3 = (2β)2/((1− γ)2(1− 2γ′)) as defined in the statement of the lemma, and
the application of Lemma D.8.2 (c) requires that γ′ < 1/2.
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Term Cov(SA
n(t1, t2), SB

n(t1, t2)). First, note that

Cov(SA
n(t1, t2), SB

n(t1, t2)) = n−1 Cov(SA
n (t1, t2), SB

n (t1, t2)).

Then,

Cov
(
SA
n (t1, t2), SB

n (t1, t2)
)

= E
[
SA
n (t1, t2)SB

n (t1, t2)
]
− E

[
SA
n (t1, t2)

]
E

[
SB
n (t1, t2)

]
= E

[ ∑
P1∈P∩

(
Sun⩽

n ×Tt2⩽
⩽t1

)
P2∈P∩

(
Sun⩽

n ×T[t1,t2]
⩽t1

)
deg({P1, P2}; t1)

]
,

where we have used that P1 ̸= P2 as they appear in disjoint sets. Next, we apply
Mecke’s formula to the above expression, and then use Lemmas D.8.2 (c) and D.8.4 (b)
with m = 2 to calculate the covariance term:

lim
n↑∞

1
n Cov

(
SA
n (t1, t2), SB

n (t1, t2)
)

= lim
n↑∞

1
n

∫
Sun⩽

n ×Tt2⩽
⩽t1

∫
Sun⩽

n ×T[t1,t2]
⩽t1

|N(p1, p2; t1)|µ(dp2)µ(dp1) = Is × It

Is := lim
n↑∞

1
n

∫
Sun⩽

n

∫
Sun⩽

n

|Ns(ps,1, ps,2)| dps,2 dps,1 = lim
n↑∞

c(1− u1−γ
n )2 = c3

It :=
∫
R

(∫
Tt2⩽
⩽t1

1{r ∈ Nt(pt; t1)}µt(dpt)
∫
T[t1,t2]
⩽s

1{r ∈ Nt(pt; t1)}µt(dpt)
)

dr

=
∫ t1

−∞
e−(t2−r)(e−(t1−r) − e−(t2−r)) dr = e−(t2−t1)(1− e−(t2−t1)),

where the finiteness of the integral Is requires that γ′ < 1/2, and we substituted
un = n−2/3.

Term Cov(SA
n(t1, t2), SC

n(t1, t2)). In this part of the proof, we use that the
covariance term Cov(SA

n (t1, t2), SC
n (t1, t2)) is determined by the common P-points,

as the P ′-points in SA
n (t1, t2) and SC

n (t1, t2) cannot be identical. Note that
Cov(SA

n (t1, t2), SC
n (t1, t2)) = n−1 Cov(SA

n (t1, t2), SC
n (t1, t2)). Then, we have

Cov
(
SA
n (t1, t2), SC

n (t1, t2)
)

= E
[
SA
n (t1, t2)SC

n (t1, t2)
]
− E

[
SA
n (t1, t2)

]
E

[
SC
n (t1, t2)

]
= E

[ ∑
P∈P∩

(
Sun⩽

n ×Tt2⩽
⩽t1

) deg(P ; t1)
∑
P ′∈P ′

1{P ′ ∈ N(P ; t2)}1{t1 ⩽ R}
]
,

where we have used that P ′
1 ̸= P ′

2 as they appear in disjoint sets. As earlier, we apply
Mecke’s formula to the above expression, and, after factorizing the spatial and the
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temporal parts, we use Lemma D.8.2 (a) for the spatial part:

Cov
(
SA
n (t1, t2), SC

n (t1, t2)
)

=
∫

Sun⩽
n ×Tt2⩽

⩽t1

|N(p; t1)|
∫

S×[t1,∞]

1{p′ ∈ N(p; t2)} dp′ µ(dp) = Is × It

Is :=
∫
Sun⩽

n

|Ns(ps)|2 dps = c2n
(
1− u1−2γ

n

)
It :=

∫
Tt2⩽
⩽t1

|Nt(pt; t1)|
∫

[t1,∞]
1{r ∈ Nt(p; t2)}dr µt(dpt)

=
∫
Tt2⩽
⩽t1

(t1 − b)
∫

[t1,t2]
dr µt(dpt)

= (t2 − t1)
∫ t1

−∞
(t1 − b)e−(t2−b) db = (t2 − t1)e−(t2−t1).

Then, we have that Cov
(
SA
n (t1, t2), SC

n (t1, t2)
)

= c2n(t2 − t1)e−(t2−t1) and thus

lim
n↑∞

1
n Cov

(
SA
n (t1, t2), SC

n (t1, t2)
)

= c2(t2 − t1)e−(t2−t1),

where we substituted un = n−2/3.

In Lemma D.5.6, we bound the error terms to bound the d3 distance in Proposi-
tion D.5.4. We examine the cost operators and then manipulate the error terms to
show their bounds.

Proof of Lemma D.5.6. First, let us recall from the statement of Proposition D.5.4
that p̃ is a point of the Poisson process P̃ = P ⊔ P ′ with intensity measure µ̃. Note
that

Dp̃S
⩾
n (t) = n−1/2Dp̃S

⩾
n (t) and D2

p̃1,p̃2S
⩾
n (t) = n−1/2D2

p̃1,p̃2S
⩾
n (t).

The expectations E[DpS
⩾
n (t)] and E[Dp′S⩾

n (t)] can be calculated by the application of
Mecke’s formula:

E
[
DpS

⩾
n (t)

]
= |N(p; t)| and E

[
Dp′S⩾

n (t)
]

=
∫
Sun⩽

n ×T
1{p′ ∈ N(p; t)}µ(dp).

In the following proof, we will need the third and fourth moments of the cost operators.
As DpS

⩾
n (t) and Dp′S⩾

n (t) are Poisson distributed, we can express their moments using
the Touchard polynomials τk(x) [95] defined by:

τk(x) =
k∑
i=0

{k
i

}
xi,

where the curly brackets denote the Stirling numbers of the second kind. Then, the
moments of the cost operators can be upper bounded by

E
[
Dp̃S

⩾
n (t)3]

= τ3
(
E

[
Dp̃S

⩾
n (t)

])
and

E
[
Dp̃S

⩾
n (t)4]

= τ4
(
E

[
Dp̃S

⩾
n (t)

])
⩽ 16 max

(
E

[
Dp̃S

⩾
n (t)

]4
, 1

)
.

(D.11)
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Error term E1(n). We substitute S⩾
n (t · ) = n−1/2S⩾

n (t · ) and apply the Cauchy–
Schwarz inequality:

E1(n)2 ⩽ n−2
∫ (

E
[(
D2
p̃1,p̃3S

⩾
n (t1)

)4]
E

[(
D2
p̃2,p̃3S

⩾
n (t1)

)4]
× E

[(
Dp̃1S

⩾
n (t2)

)4]
E

[(
Dp̃2S

⩾
n (t2)

)4])1/4
µ̃(d(p̃1, p̃2, p̃3)).

Note that the integrand is nonzero only if either p̃1, p̃2 ∈ Sun⩽
n × T and p̃3 ∈ S × R,

or p̃1, p̃2 ∈ S× R and p̃3 ∈ Sun⩽
n × T, as otherwise at least one of the cost operators

D2
p̃1,p̃3 and D2

p̃2,p̃3 is 0. In the first case, we have that

E1(n)2 ⩽ n−2
∫∫

(Sun⩽
n ×T)2

(
E

[
Dp1S

⩾
n (t2)4]

E
[
Dp2S

⩾
n (t2)4])1/4

× |N(p1, p2; t1)|µ(dp1)µ(dp2).

We bound the fourth moments of Dp1S
⩾
n (t2) and Dp2S

⩾
n (t2) using (D.11), and we

extend the integral over Sun⩽
n ×T to Sn×T. Then, the integral can be upper bounded

by a sum of terms of the form

4
∫∫

(Sn×T)2
|N(p1; t2)|m1 |N(p1, p2; t1)||N(p2; t2)|m2 µ(dp1)µ(dp2) = 4Is × It

Is :=
∫∫

(Sn)2
|Ns(ps,1)|m1 |Ns(ps,1, ps,2)||Ns(ps,2)|m2 dps,1 dps,2

It :=
∫∫

T2
|Nt(ps,1; t2)|m1 |Nt(ps,1, ps,2; t1)||Nt(ps,2; t2)|m2 µt(dps,1)µt(dps,2),

where m1,m2 ∈ {0, 1}. For the spatial part Is, we use Lemma D.8.2 (e) to see that
Is ∈ O(n) if γ, γ′ < 1/2. We bound the temporal part It ⩽ 1 using Lemma D.8.4 (c),
thus E1(n) ∈ O(n−1/2).

In the second case, when p̃1, p̃2 ∈ S× R and p̃3 ∈ Sun⩽
n × T, we have that

E1(n)2 ⩽ n−2
∫
Sun⩽

n ×T

∫∫
(S×R)2

1{{p′
1, p

′
2} ⊆ N(p; t1)}

×
(
E

[(
Dp′

1
S⩾
n (t2)

)4]
E

[(
Dp′

2
S⩾
n (t2)

)4])1/4
dp′

1, dp′
2 µ(dp)

⩽ n−2
∫
Sn×T

(∫
S×R

1{p′ ∈ N(p; t1)}E
[(
Dp′S⩾

n (t2)
)4]1/4 dp′

)2
µ(dp),

where we extended the integral over Sun⩽
n ×T to Sn×T in the last step. We use (D.11)

again to bound E[Dp′S⩾
n (t2)4]:

E1(n)2 ⩽ 4n−2
∫
Sn×T

( ∫
S×R

1{p′ ∈ N(p1; t1)}

×max
(∫

Sn×T
1{p′ ∈ N(p2; t2)}µ(dp2), 1

)
dp′

)2
µ(dp1),

the integration domain of the inner integral was extended to Sn × T again in the
last step. If the maximum is equal to one, the integral can be upper bounded by
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∫
Sn×T|N(p; t1)|2 µ(dp) ∈ O(n) by Lemmas D.8.2 (a) and D.8.4 (a). On the other hand,

if the maximum is greater than one, the integral is bounded by∫
Sn×T

(∫
S×R

1{p′ ∈ N(p1; t1)}
∫
Sn×T

1{p′ ∈ N(p2; t2)}µ(dp2) dp′
)2
µ(dp1) = Is × It

Is :=
∫
Sn

(∫
S
1{p′

s ∈ Ns(ps,1)}
∫
Sn

1{p′
s ∈ Ns(ps,2)} dps,2 dp′

s

)2
dps,1

It :=
∫
T

(∫
R
1{r ∈ Nt(ps,1; t1)}

∫
T
1{r ∈ Nt(ps,2; t2)}µt(dps,2) dr

)2
µt(dps,1).

We begin with the spatial part Is:

Is ⩽
( 2β

1− γ
)2 ∫

Sn

(∫
S
1{p′

s ∈ Ns(ps)}w−γ′ dp′
s

)2
dps

= (2β)4

(1− γ)2(1− 2γ′)2

∫
Sn

u−2γ d(x, u) = (2β)4n

(1− γ)2(1− 2γ)(1− 2γ′)2 ∈ O(n),

where we extended the innermost integral to the whole space S × R and applied
Lemmas D.8.1 (c) and D.8.3 (b) in the first step. Next, we move on to the temporal
part It:

It =
∫
T

(∫
R
1{r ∈ Nt(pt; t1)}e−(t2−r) dr

)2
µt(dpt)

=
∫
T
(e−(t2−t1) − e−(t2−b))2

1{b ⩽ t1 ⩽ b+ ℓ}µt(d(b, ℓ))

=
∫ t1

−∞

∫ ∞

t1−b
(e−(t2−t1) − e−(t2−b))2 PL(dℓ) db = 1

3e−(t2−t1),

Thus, in both cases, we have that E1(n) ∈ O(n−1/2).

Error term E2(n). We substitute S⩾
n (t · ) = n−1/2S⩾

n (t · ) and apply the Cauchy–
Schwarz inequality:

E2(n)2 ⩽ n−2
∫ (

E
[(
D2
p̃1,p̃3S

⩾
n (t1)

)4]
E

[(
D2
p̃2,p̃3S

⩾
n (t1)

)4]
× E

[(
D2
p̃1,p̃3S

⩾
n (t2)

)4]
E

[(
D2
p̃2,p̃3S

⩾
n (t2)

)4])1/4
µ̃(d(p̃1, p̃2, p̃3)).

As in the case of E1, the integrand is nonzero only if either p̃1, p̃2 ∈ Sun⩽
n × T and

p̃3 ∈ S× R, or if p̃1, p̃2 ∈ S× R and p̃3 ∈ Sun⩽
n × T. In the first case,

E2(n)2

⩽ n−2
∫

(Sun⩽
n ×T)2

∫
S×R

1{p′ ∈ N(p1, p2; t1)}1{p′ ∈ N(p1, p2; t2)} dp′ µ⊗2(d(p1, p2))

⩽ n−2
∫∫

S2
n

|Ns(ps,1, ps,2)|dps,2 dps,1

∫∫
T2
|Nt(ps,1, ps,2; t1)|µt(dps,1)µt(dps,2),
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where we extended the integration domain from Sun⩽
n ×T to Sn ×T, and we used that

|Nt(ps,1, ps,2; t1)∩Nt(ps,1, ps,2; t2)| ⩽ |Nt(ps,1, ps,2; t1)|. To upper bound the spatial and
the temporal parts, we use Lemmas D.8.2 (c) and D.8.4 (b) with m = 2, respectively:

E2(n)2 ⩽
2β2

(1− γ)2(1− 2γ′)n
−1,

and thus E2(n) ∈ O(n−1/2).
In the second case, when p̃1, p̃2 ∈ S× R and p̃3 ∈ Sun⩽

n × T, we have that

E2(n)2 ⩽ n−2
∫
Sun⩽

n ×T

∫∫
(S×R)2

1{p′
1 ∈ N(p; t1) ∩N(p; t2)}

× 1{p′
2 ∈ N(p; t1) ∩N(p; t2)} d(p′

1, p
′
2)µ(dp)

⩽ n−2
∫
Sn×T

|N(p; t1) ∩N(p; t2)|2 µ(dp)

⩽ n−2
∫
Sn×T

|N(p; t1)|2 µ(dp) ⩽ 2(2β)2n−1

(1− 2γ)(1− γ′)2 ∈ O(n−1),

where we used Lemma D.8.2 (a) with α = 2, A = [0, n] and u− = 0. Thus, in both
cases, we have that E2(n) ∈ O(n−1/2).

Error term E3(n). If p := p̃ ∈ Sun⩽
n × T, then

E3(n) = n−3/2
∫
Sun⩽

n ×T
E

[(
DpS

⩾
n (t)

)3]
µ(dp)

= n−3/2
∫
Sun⩽

n ×T
|N(p; t)|3 + 3|N(p; t)|2 + |N(p; t)|µ(dp),

where we expressed the third moment of the cost operator with the third Touchard
polynomial. Next, we apply Lemma D.8.4 (a) for the temporal parts to show that
they can be bounded by Γ(4):

E3(n) ⩽ Γ(4)n−3/2
∫
Sun⩽

n

|Ns(ps)|3 + 3|Ns(ps)|2 + |Ns(ps)| dps.

For the second and third terms, we extend the integration domain from Sun⩽
n to Sn,

and apply Lemma D.8.2 (a) with A = [0, n] and u− = 0, requiring that γ < 1/2, to
show that their orders are O(n−1/2). For the first term, we apply Lemma D.8.2 (a) to
get ∫

Sun⩽
n

|N(p; t)|3 d(x, u) =


(

2β
1−γ′

)3
n

1−3γ (1− u1−3γ
n ) if γ ̸= 1/3(

2β
1−γ′

)3
n log(u−1

n ) if γ = 1/3,

which is positive regardless of the value of γ ∈ (0, 1/2), since when the constant
γ > 1/3, then (1 − u1−3γ

n ) < 0 as well. Substituting un = n−2/3, we have that the
order of the integral is o(n3/2), thus E3(n)→ 0 as n→∞.
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If p′ := p̃ ∈ S× R, then

E3(n) = n−3/2
∫
S×R

E
[(
Dp′S⩾

n (t)
)3]

dp′

= n−3/2
∫
S×R

E
[
Dp′S⩾

n (t)
]3 + 3E

[
Dp′S⩾

n (t)
]2 + E

[
Dp′S⩾

n (t)
]
dp′.

To see that limn↑∞E3(n) = 0, it is enough to show that
∫
S×R E[Dp′S⩾

n (t)]m dp′ ∈ O(n)
where m ∈ {1, 2, 3}. Thus, factorizing the integral as usual into the spatial and the
temporal parts,∫

S×R
E

[
Dp′S⩾

n (t)
]m dp′ =

∫
S×R

(∫
Sun⩽

n ×T
1{p′ ∈ N(p; t)}µ(dp)

)m
dp′ = Is × It

Is :=
∫
S

(∫
Sun⩽

n

1{p′
s ∈ Ns(ps)} dps

)m
dp′

s ∈ O(n)

It :=
∫
R

(∫
T
1{r ∈ Nt(pt; t)}µt(dpt)

)m
dr = 1

m
,

where, after extending the integration domain from Sun⩽
n to Sn, we applied

Lemma D.8.2 (d) to the spatial part, and we used Lemma D.8.4 (d) for the tem-
poral part. Thus, we have that limn↑∞E3(n) = 0.

D.10 Proofs of the lemmas used to prove Theorem D.2.4
This section presents the proofs of the lemmas used in the proof of Theorem D.2.4.
In the proof of Theorem D.2.4, we introduced the plus-minus decomposition at the
beginning of Section D.6 to decompose Sn to the difference of two monotone increasing
functions. The first proof shows that the difference of the plus and minus parts of the
edge count is indeed the total edge count.

Proof of Lemma D.6.1. We have that

S+
n (t)− S−

n (t)
=

∑
P∈P∩(Sn×T0⩽)

∑
P ′∈P ′

1{P ′ ∈ N+(P ; t)} −
∑

P∈P∩(Sn×T0⩽)

∑
P ′∈P ′

1{P ′ ∈ N−(P ; t)}

=
∑

P∈P∩(Sn×T0⩽)

∑
P ′∈P ′

1{P ′
s ∈ Ns(Ps)}

×
(
1{0 ⩽ B + L}1{B ⩽ R ⩽ (B + L) ∧ t} − 1{B ⩽ R ⩽ B + L ⩽ t}

)
=

∑
P∈P∩(Sn×T0⩽)

∑
P ′∈P ′

1{P ′
s ∈ Ns(Ps)}1{R ∈ Nt(Pt; t)} = Sn(t),

as desired.

We continue by showing that the conditions of Theorem D.6.2 hold for the processes
S±
n ( · ). The details follow after an overview of the proof of the conditions. Condition (1)

of Davydov’s theorem is about the convergence of the finite-dimensional distributions
of S±

n , which we show in the following proof.
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Proof of Proposition D.6.3. To show Condition (1), we follow the same arguments for
S±
n (t) as in Section D.5 for Sn(t), i.e., we employ [97, Theorem 1.1]. Following the

same steps, we first show that the limiting covariance function of S±
n (t) is bounded.

Lemma D.10.1 (Covariance function of S±
n (t)). Let γ, γ′ < 1/2 and 0 ⩽ s ⩽ t ⩽ 1.

Then the limit limn↑∞ Cov(S±
n (s), S±

n (t)) <∞, exists.

The proof of Lemma D.10.1 and all proofs of subsequent lemmas in this section are
given in Section D.10. The next step is to bound the error terms E1(n), E2(n), E3(n).
As in the proof of Lemma D.5.6, the cost operators DpS

±
n (t), Dp′S±

n (t) and D2
p,p′S±

n (t)
are given by

DpS
±
n (t) :=

∑
P ′∈P ′

1{P ′ ∈ N±(p; t)}

Dp′S±
n (t) :=

∑
P∈P∩(Sn×T)

1{p′ ∈ N±(P ; t)}

D2
p,p′S±

n (t) := 1{p′ ∈ N±(p; t)},

where DpS
±
n (t) and Dp′S±

n (t) are Poisson distributed, and D2
p,p′S±

n (t) is deterministic.

Lemma D.10.2 (Bounds of the error terms for S±
n (t)). Let γ < 1/2, γ′ < 1/3. Then,

the error terms defined in (D.5) with S±
n in place of Sn satisfy limn↑∞(E1(n) +E2(n) +

E3(n)) = 0.

This shows that each finite-dimensional distribution of S±
n converges to a multivariate

normal distribution.

Condition (2) of Davydov’s theorem is about the tightness of the processes S±
n ( · ),

which is shown next.

Proof of Proposition D.6.4. We have that

E
[(
S

±
n (t)− S±

n (s)
)4]

= n−2 E
[(

∆±
n (s, t)− E[∆±

n (s, t)]
)4]
,

where we wrote ∆±
n (s, t) := S±

n (t)− S±
n (s), which is nonnegative for s ⩽ t. The fourth

moment can be expressed with the fourth cumulant κ4 [84, Appendix B] as

E
[(

∆±
n (s, t)− E[∆±

n (s, t)]
)4]

= κ4(∆±
n (s, t)) + 3 Var(∆±

n (s, t))2.

Beginning with the variance term, we have the following.

Lemma D.10.3 (Variance of ∆±
n (s, t)). Let γ, γ′ < 1/2, then, we have Var(∆±

n (s, t)) ∈
O(n(t− s)).

Next, we show for the cumulant term that |κ4(∆±
n (s, t))| ∈ O(n(t−s)) ⊆ O(n2(t−s)1+η)

for all s, t ∈ (0, 1) if t− s ⩾ an.

Lemma D.10.4 (Order of the cumulant term κ4(∆±
n (s, t))). Let γ, γ′ < 1/4. We have

for 0 ⩽ s < t ⩽ 1 the orders of the cumulant term κ4(∆±
n (s, t)) ∈ O(n(t− s)).
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Before presenting the proof of Lemma D.10.4 in Section D.10, we provide a rough
outline here.

We follow the arguments in [22, Lemma C.3] and partition the window [0, n] into n
disjoint intervals {[i − 1, i] : i ∈ {1, . . . , n}} of size 1, and write Vi := S[i−1,i]. For
t ∈ [0, 1], analogously to the definition of S±

n (t), we write V ±
i (t) for the number of

edges whose P-endpoint is in Vi, i.e.,

V ±
i (t) :=

∑
P∈P∩(Vi×T0⩽)

deg±(P ; t) and S±
n (t) =

n∑
i=1

V ±
i (t).

Note that the mappings t 7→ V ±
i (t) are monotone. Furthermore, we write

∆±
i,n(s, t) := V ±

i (t)− V ±
i (s) and ∆±

n (s, t) =
n∑
i=1

∆±
i,n(s, t)

to denote the change of V ±
i (t) in the time interval [s, t]. Then, using the multilinearity

of the cumulant,

|κ4(∆±
n (s, t))| =

∣∣∣ n∑
i,j,k,ℓ=1

ci,j,k,ℓκ4(∆±
i,n(s, t),∆±

j,n(s, t),∆±
k,n(s, t),∆±

ℓ,n(s, t))
∣∣∣

⩽ c1

n∑
i,j,k,ℓ=1

∣∣κ4(∆±
i,n(s, t),∆±

j,n(s, t),∆±
k,n(s, t),∆±

ℓ,n(s, t))
∣∣,

where ci,j,k,ℓ > 0 are coefficients depending only on which of the indices i, j, k, ℓ are
equal, c1 := max({ci,j,k,ℓ}), κ4(∆±

i,n(s, t),∆±
j,n(s, t),∆±

k,n(s, t),∆±
ℓ,n(s, t)) denotes the

joint fourth-order cumulant, and we used the triangle inequality in the last step. From
now on, we drop the arguments (s, t) for brevity. Let {π1, π2} ⪯ {i, j, k, ℓ} denote a
partition of the set {i, j, k, ℓ}, and define

ρ(i, j, k, ℓ) := max
{π1,π2}⪯{i,j,k,ℓ}

(
dist

(
V π1 ,V π2

))
, (D.12)

where V π := {Va : a ∈ π}. Then,

|κ4(∆±
n )| = c1

n∑
m=0

n∑
i,j,k,ℓ

ρ(i,j,k,ℓ)=m

∣∣κ4(∆±
i,n,∆

±
j,n,∆

±
k,n,∆

±
ℓ,n)

∣∣.
Next, we distinguish three cases.

Case (1) In the first case, all the blocks are the same: ρ(i, j, k, ℓ) = 0, and thus
Vi = Vj = Vk = Vℓ.

Case (2) In the second case, not all the blocks are identical. Three of them are
relatively close to each other, while the fourth is separated from the
rest: ρ(i, j, k, ℓ) = dist(Vi, {Vj ,Vk,Vℓ}) > 0 and diam({Vj ,Vk,Vℓ}) ⩽
ρ(i, j, k, ℓ) + 1.
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Case (3) In the third case, there are two pairs of blocks, with the blocks within each
pair being close, but the pairs themselves relatively far apart: ρ(i, j, k, ℓ) =
dist({Vi,Vk}, {Vj ,Vℓ}) > 0 and dist(Vi,Vj) ∨ dist(Vk,Vℓ) ⩽ ρ(i, j, k, ℓ),

where the term +1 in Case (2) is due to the size of the blocks. Even though Case (2) and
Case (3) are not mutually exclusive, we treat them separately for clarity. The remainder
of the proof is devoted to showing that in all three cases, κ4(∆±

n (s, t)) ∈ O(n(t− s)),
with all the details provided in the proof of Lemma D.10.4 below.

Then, by Lemma D.10.4, since t − s > n−1/(1+η), we have in all cases that
κ4(∆±

n (s, t)) ∈ O(n(t− s)) ⊆ O(n2(t− s)1+η).

Finally, we show that Condition (3) of Theorem D.6.2 holds, which is about the
convergence of the expected increments E

[
∆±
n (tk, tk+1)

]
.

Proof of Lemma D.6.5. Note that for some constant c > 0, we can bound

E
[
∆±
n (tk, tk+1)

]
=

∫
Sn×T0⩽

|δtk,tk+1(N±(p))| dp ⩽ cn(tk+1 − tk),

as the integral factors into the product of the spatial and the temporal parts, and
the spatial part is bounded by Lemma D.8.2 (a) with u− = 0, and the tempo-
ral part is bounded by Lemma D.8.6 (b). Now, setting tk := kn−1/(1+η), we have
E

[
∆±
n (tk, tk+1)

]
⩽ cn1−1/(1+η), which is independent of k. Finally, setting η < 1 gives

max
k⩽⌊n1/(1+η)⌋

(
n−1/2 E

[
∆±
n (tk, tk+1)

])
∈ O(n1/2−1/(1+η)) ⊂ o(1),

as desired.

Since the proofs of the Lemmas D.10.1 and D.10.2 are very similar to the proofs of
the corresponding lemmas used in the proof of Proposition D.5.4, we postpone their
proofs to Appendix D.A.

Next, we present the bounds of the variance and cumulant terms that were
required by Condition (2) of Theorem D.6.2 to show the tightness of the sequence of
random variables S±

n . While bounding the variance term Var(∆±
n (s, t)) is relatively

straightforward after the application of the Poincaré inequality, bounding the cumulant
term κ4∆±

n (s, t) requires a more careful analysis.

Proof of Lemma D.10.3. First, note that Dp(∆±
n (s, t)) does not depend on the point

process P , and Dp′(∆±
n (s, t)) does not depend on the point process P ′. We bound the

variance term using the Poincaré inequality [66, Theorem 18.7]:

Var(∆±
n (s, t)) ⩽

∫
Sn×T0⩽

E
[
Dp(∆±

n (s, t))2]
µ(dp) +

∫
Sn×R

E
[
Dp′(∆±

n (s, t))2]
dp′.

(D.13)
We consider the first term first. Note that

Dp(∆±
n (s, t)) = Dp(S±

n (t))−Dp(S±
n (s))
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is the number of P ′-points connecting to p in the time interval [s, t] in both of the plus
and minus cases. Thus, Dp(∆±

n (s, t)) is Poisson distributed with mean

E[Dp(∆±
n (s, t))] = E

[ ∑
P ′∈P ′

(
1{P ′ ∈ δs,t(N±(p))}

)]
=

∣∣δs,t(N±(p))
∣∣. (D.14)

Let us recall the definition of δs,t(N±(p)) from (D.8). Then, we integrate the second
moment of this random variable over Sn × T0⩽:∫

Sn×T0⩽
E

[
Dp(∆±

n (s, t))2]
µ(dp)

=
∫
Sn×T0⩽

E
[
Dp(∆±

n (s, t))
]

+ E
[
Dp(∆±

n (s, t))
]2
µ(dp)

=
∫
Sn×T0⩽

∣∣δs,t(N±(p))
∣∣ +

∣∣δs,t(N±(p))
∣∣2 µ(dp).

(D.15)

As |δs,t(N±(p))| = |Ns(ps)||δs,t(N±
t (pt))|, applying Lemmas D.8.2 (a) and D.8.6 (c)

yields ∫
Sn×T0⩽

E
[
Dp(∆±

n (s, t))2]
µ(dp) ∈ O(n(t− s)).

Note that Dp′(∆±
n (s, t)) is also a Poisson distributed random variable with mean

E[Dp′(∆±
n (s, t))] = E

[ ∑
P∈P∩(Sn×T0⩽)

1{p′ ∈ δs,t(N±(P ))}
]

=
∫
Sn×T0⩽

1{p′ ∈ δs,t(N±(p))}µ(dp).
(D.16)

Then, following a similar calculation to (D.15), since E[Dp′(∆±
n (s, t))2] =

E[Dp′(∆±
n (s, t))]2 + E[Dp′(∆±

n (s, t))], we have∫
S×R

E
[
Dp′(∆±

n (s, t))2]
dp′

=
2∑

m=1

∫
S×R

(∫
Sn×T0⩽

1{p′ ∈ δs,t(N±(p))}µ(dp)
)m

dp′.

(D.17)

Both integrals can be factored into a spatial and a temporal part. For the spatial
parts, ∫

S

(∫
Sn

1{p′
s ∈ Ns(ps)}µ(dp)

)m
dp′

s ∈ O(n),

by Lemma D.8.2 (d), and for the temporal parts,∫
R

(∫
T0⩽

1{r ∈ δs,t(N±
t (pt))}µt(dpt)

)m
dr ∈ O(t− s),

by Lemma D.8.4 (d). Thus,
∫
Sn×R E

[
Dp′(∆±

n (s, t))2]
dp′ ∈ O(n(t − s)), where we

require again that γ′ < 1/2. Then, Var(∆±
n (s, t))2 ∈ O

(
n2(t− s)1+η)

, as desired.
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To bound the cumulant term in the three cases introduced in Section D.10, we
employ [84, Proposition 3.2.1] to rewrite the fourth cumulant κ4(∆±

n ) in a form that is
easier to bound.

Proof of Lemma D.10.4. In the following, we show the proof for the three cases of the
lemma.

Case (1). We begin with Case (1). In this case, i = j = k = ℓ, and using the
definition [84, Proposition 3.2.1] of the fourth cumulant κ4(∆±

i,n), we have that

κ4(∆±
i,n) =

∑
M

(1)
1 ,...,M

(1)
q

c
M

(1)
1 ,...,M

(1)
q

q∏
b=1

E
[(

∆±
i,n

)|M(1)
b

|] with

c
M

(1)
1 ,...,M

(1)
q

:= (−1)q−1(q − 1)!,

(D.18)

where {M (1)
1 , . . . ,M (1)

q } ⪯ {i, i, i, i} denotes a partition of the multiset {i, i, i, i} and
|cM(1)

1 ,...,M(1)
q
| <∞ are coefficients depending on the number of groups q of the partition

M (1)
1 , . . . ,M (1)

q . Then, taking absolute values and applying the triangle inequality, we
have the following upper bound:

|κ4(∆±
i,n)| ⩽ c2

∑
M

(1)
1 ,...,M

(1)
q

q∏
b=1

E
[(

∆±
1,n

)|M(1)
b

|]

⩽ c2
∑

M
(1)
1 ,...,M

(1)
q

q∏
b=1

E
[(

∆±
1,n

)4]|M(1)
b

|/4
⩽ c3 E

[(
∆±

1,n
)4]
,

(D.19)

where c2 := max({|cM(1)
1 ,...,M(1)

q
|}), and in the first step we used stationarity of the

Poisson processes P,P ′, and that ∆±
1,n ⩾ 0. In the third step, recognizing that |M (1)

b | ∈
{1, . . . , 4}, we applied Jensen’s inequality, and finally, we used that

∑q
b=1|M (1)

b | = 4
with a large enough constant c3 :=

∑
M(1)

1 ,...,M(1)
q
c2.

Lemma D.10.5 (Bound on the fourth moment of ∆±
1,n). Let γ < 1/4. Then, we have

that
E

[(
∆±

1,n
)4]
∈ O(t− s).

Then, we have that in Case (1),

|κ4(∆±
n (s, t))| ⩽ c1c3

n∑
i=1

E
[(

∆±
1,n

)4]
∈ O(n(t− s)).

Case (2). For Case (2), we employ [4, Lemma 5.1] to decompose the cumulant into
a sum of products, where the terms involve covariances and moments. Our strategy
is to bound the moments by a constant, and then bound the covariances using the
common neighborhood of the points. Let us denote the blocks of a partition of the
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indices {j, k, ℓ} by M (2)
1 , . . . ,M (2)

q , and let |cM(2)
1 ,...,M(2)

q
| <∞ be coefficients depending

on the partition M (2)
1 , . . . ,M (2)

q of the indices {j, k, ℓ}. Then, we have that

|κ4(∆±
i,n,∆

±
j,n,∆

±
k,n,∆

±
ℓ,n)|

=
∣∣∣∣ ∑
M

(2)
1 ,...,M

(2)
q

c
M

(2)
1 ,...,M

(2)
q

Cov
(
∆±
i,n,

∏
m∈M(2)

1

∆±
m,n

) q∏
b=2

E
[ ∏
m∈M(2)

b

∆±
m,n

]∣∣∣∣
⩽ c4

∑
M

(2)
1 ,...,M

(2)
q

∣∣∣Cov
(
∆±
i,n,

∏
m∈M(2)

1

∆±
m,n

)∣∣∣ q∏
b=2

E
[ ∏
m∈M(2)

b

∆±
m,n

]
,

(D.20)

where we used the triangle inequality in the second step, set c4 := max({|cM(2)
1 ,...,M(2)

q
|}),

and dropped the absolute values on the second term as ∆±
m,n ⩾ 0. Note that |M (2)

b | ⩽ 2
asM (2)

1 contains at least one of {j, k, ℓ}. To upper bound the product, we apply Hölder’s
inequality:

q∏
b=2

E
[ ∏
m∈M(2)

b

∆±
m,n

]
⩽

q∏
b=2

∏
m∈M(2)

b

E
[(

∆±
m,n

)|M(2)
b

|]1/|M(2)
b

| =
q∏
b=2

E
[(

∆±
1,n

)|M(2)
b

|]

⩽
q∏
b=2

E
[(

∆±
1,n

)2]|M(2)
b

|/2
⩽ E

[(
∆±

1,n
)2]1/2

∑q

b=2|M(2)
b

|
,

(D.21)

where we used that {∆±
m,n} are identically distributed in the second step, and employed

Jensen’s inequality in the third step as |M (2)
b | ∈ {1, 2}. As we saw in Case (1),

E
[
|∆±

1,n|2
]
⩽ E

[
|∆±

1,n|4
]1/2

<∞ by the Cauchy–Schwarz inequality, thus the product
in (D.21) is finite. Next, we need to bound the covariance term in (D.20). With this,
so far, we have that

∣∣κ4(∆±
n (s, t))

∣∣ ⩽ c5

n−1∑
a=0

∑
i,j,k,ℓ

ρ(i,j,k,ℓ)=a

∑
M

(2)
1 ,...,M

(2)
q

∣∣∣Cov
(
∆±
i,n,

∏
m∈M(2)

1

∆±
m,n

)∣∣∣, (D.22)

where c5 > 0 is a finite constant bounding c4 and the sum of the product terms. Next,
we bound the covariance term. Note that |M (2)

1 | ∈ {1, 2, 3}. As each of these terms is
similar, we only consider the case |M (2)

1 | = 3.

Lemma D.10.6 (Bound on the covariance term). Let γ < 1/3. Then, we have that∣∣Cov(∆±
i,n,∆

±
j,n∆±

k,n∆±
ℓ,n)

∣∣ ⩽ ∑
P1∈P∩(Vi∩T0⩽),P2∈P∩(Vj∩T0⩽)
P3∈P∩(Vk∩T0⩽),P4∈P∩(Vℓ∩T0⩽)

A(P 4,σσσ4),

where P 4 := {P1, P2, P3, P4}, σσσ4 := {σ1, σ2, σ3, σ4} ⊆ {s, t}, and

A(P 4,σσσ4) := |N±(P1;σ1) ∩N±(P2;σ2)|(|N±(P3;σ3)|+ 2)(|N±(P4;σ4)|+ 2).
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Then, we have the following bound for |κ4(∆±
n (s, t))|:

∣∣κ4(∆±
n (s, t))

∣∣ ⩽ c6 E
[n−1∑
a=0

∑
i,j,k,ℓ

ρ(i,j,k,ℓ)=a

∑
P1∈P∩(Vi∩T0⩽),P2∈P∩(Vj∩T0⩽)
P3∈P∩(Vk∩T0⩽),P4∈P∩(Vℓ∩T0⩽)

A(P 4,σσσ4)
]

with a large enough constant c6 > 0. We distinguish several cases depending on which
of the points P2, P3, P4 are identical, and we apply the Mecke formula to each of these
cases. The integrals with respect to p3, p4 factor, and we combine the sum over the
blocks and the integral over a block to a single integral. Using |j − k| ∨ |j − ℓ| ⩽ a, we
obtain the following bounds for the factors:∫

S[j−a,j+a+1]×T0⩽
|N±(p3, σ3)|mk µ(dp3) ⩽ c7a∫

S[j−a,j+a+1]×T0⩽
|N±(p4, σ4)|mℓ µ(dp4) ⩽ c7a,

with some large enough constant c7 > 0, where the exponents mk,mℓ ∈ {0, 1, 2} depend
on the term we are looking at and on the case P3 = P4. We used Lemmas D.8.2 (a)
with u− = 0 and D.8.6 (b). Let us set ma ∈ {0, 1, 2} to be the number of points
in {P3, P4} that appear in the term we consider, and we examine the integral with
respect to p2. Then, combining again the integral within the block Vj and the sum of
the blocks with respect to a ⩽ |i− j| ⩽ |x1 − x2|+ 1 into a single integral, we have
bounds of the form∣∣κ4(∆±

n (s, t))
∣∣

⩽ c8

n∑
i=1

∫
Vi×T0⩽

n−1∑
a=0

∫
Vj×T0⩽

|N±(p1, σ1)|m1 |N±(p1, σ1) ∩N±(p2, σ2)|

× |N±(p2, σ2)|m2ama µ(dp2)µ(dp1)

⩽ 2ma+1c8

∫
Sn×T0⩽

∫
Sn×T0⩽

|N±(p1, σ1)|m1 |N±(p1, σ1) ∩N±(p2, σ2)|

× |N±(p2, σ2)|m2(|x1 − x2|ma + 1)µ(dp2)µ(dp1),
(D.23)

where the exponents m1 = 0 and m2 ∈ {0, 1, 2} depend on the term we are looking
at and on the number of the points in P3, P4 that are identical to P2. Even though
m1 = 0 in (D.23), this formula is referenced later in Case (3), where m1 can be 1. Note
also that m2 +ma ⩽ 2. Then, using Lemma D.8.2 (e), we have that the spatial part
is O(n). The maximum values of the exponents in the application of Lemma D.8.2 (e)
are summarized in Table D.1 for each case, where we used that the expressions
are symmetric in the indices 3, 4. Noting that we consider only P-vertices whose
lifetime intersects the interval [0, 1], the temporal part is bounded by a constant using
Lemma D.8.6 (f). Then, |κ4(∆±

n )(s, t)| ∈ O(n). If |M (2)
1 | < 3, the same calculation

can be followed with possibly different exponents mj ,mk,mℓ,ma.

Case (3). We calculate Case (3) similarly. Let M (3)
1 , . . . ,M (3)

q1 be the groups of the
partition of {i, j}, and M (3)

q1+1, . . . , M (3)
q1+q2 be the groups of the partition of {k, ℓ}, with
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q1, q2 ∈ {1, 2}. Applying [4, Lemma 5.1] yields

|κ4(∆±
i,n,∆

±
j,n,∆

±
k,n,∆

±
ℓ,n)| =

∣∣∣∣ ∑
M

(3)
1 ,...,M

(3)
q1+q2

c
M

(3)
1 ,...,M

(3)
q1+q2

× Cov
( ∏
m1∈M1

∆±
m1,n,

∏
mq+1∈Mq+1

∆±
mq+1,n

)
E

[
∆±
m2,n

]
E

[
∆±
mq+2,n

]∣∣∣∣.
After the application of the triangle inequality, we bound the product of the expectations
by a constant in the same way as in Case (2), which requires no constraint on γ in this
case. Then, we only need to show a bound for the covariance term. As all partitions
of the set {i, j} and {k, ℓ} are considered similar, we consider only the case when
q1 = q2 = 2. Then, the covariance term is bounded by

∣∣Cov(∆±
i,n∆±

j,n,∆
±
k,n∆±

ℓ,n)
∣∣ ⩽∣∣E[

Cov(∆±
i,n∆±

j,n,∆
±
k,n∆±

ℓ,n | P)
]∣∣, where we used the independence property of the

Poisson process P to see that Cov(E[∆±
i,n∆±

j,n|P ],E[∆±
k,n∆±

ℓ,n |P ]) = 0. Using bilinearity
and the triangle inequality again,∣∣E[

Cov(∆±
i,n∆±

j,n,∆
±
k,n∆±

ℓ,n | P)
]∣∣

⩽
∑

σ1,σ2,σ3,σ4∈{s,t}
P1∈P∩(Vi×T0⩽),P3∈P∩(Vj×T0⩽)
P2∈P∩(Vk×T0⩽),P4∈P∩(Vℓ×T0⩽)

∣∣∣∣Cov
( deg±(P1;σ1) deg±(P3;σ3),

deg±(P2;σ2) deg±(P4;σ4)

∣∣∣∣ P)∣∣∣∣.

Note the indices of the points P1, P2, P3, P4 in the covariance term. We set them
so that P1, P2 are the points corresponding to the indices i, k, respectively. This is
because we would like to use the common neighborhood of the points P1, P2 to bound
the covariance term, so that we can reuse the calculations from Case (2). Expanding
one of the individual covariance terms as in Case (2), we have that∣∣∣Cov

(
deg±(P1;σ1) deg±(P2;σ2), deg±(P3;σ3) deg±(P4;σ4)

∣∣ P)∣∣∣
= E

[ ∑
{P ′

1,P
′
2,P

′
3,P

′
4}∈(P ′)4

{P ′
1,P

′
3}∩{P ′

2,P
′
4}≠∅

1{P ′
1 ∈ N±(P1;σ1)}1{P ′

3 ∈ N±(P3;σ3)}

× 1{P ′
2 ∈ N±(P2;σ2)}1{P ′

4 ∈ N±(P4;σ4)}
∣∣∣ P]

= E
[ ∑

{P ′
1,P

′
3,P

′
4}∈(P ′)3

1{P ′
1 ∈ N±(P1;σ1) ∩N±(P2;σ2)}

× 1{P ′
3 ∈ N±(P3;σ3)}1{P ′

4 ∈ N±(P4;σ4)}
∣∣∣ P]

,

where in the last step we used that the formula above is symmetric in the indices i, j
and k, ℓ, thus we assume that P ′

1 = P ′
2. Apart from a change of indices, this expression

is identical to the one in (D.30) in Case (2). Although the application of the Mecke
formula for the sum over the points P1, P2, P3, P4 results in cases P1 = P3 ̸= P2 = P4,
P1 = P3 ̸= P2 ̸= P4, P1 ̸= P3 ̸= P2 = P4, P1 ̸= P3 ̸= P2 ̸= P4, all of these terms can be
upper bounded with the same calculations as in Case (2). The only difference is the
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possible values of the exponents m1,m2,m3,m4,ma. In this case, m1 = 1 whenever
P1 = P3 and P ′

1 ̸= P ′
3.

We summarized the maximum values of the exponents in the application of
Lemma D.8.2 (e) in Table D.1.

For Case (1), we bound the fourth moment of ∆±
n (s, t) in the following proof.

Proof of Lemma D.10.5. Let us introduce the notation

δ±
s,t(P ) := deg±(P ; t)− deg±(P ; s) =

∑
P ′∈P ′

1{P ′ ∈ N±(P ; t) \N±(P ; s)}.

Then,
∆±

1,n = V ±
1 (t)− V ±

1 (s) =
∑

P∈P∩(V1×T0⩽)
δ±
s,t(P ),

and we expand the fourth moment E[(∆±
1,n)4] as follows:

E
[(

∆±
1,n

)4]
= E

[( ∑
P∈P∩(V1×T0⩽)

δ±
s,t(P )

)4]
= c1 E

[ ∑
P 4∈P4

̸=∩(V1×T0⩽)4

∏
i⩽4

δ±
s,t(P1)

]

+ c2 E
[ ∑

P 3∈P3
̸=∩(V1×T0⩽)3

δ±
s,t(P1)2δ±

s,t(P2)δ±
s,t(P3)

]

+ c3 E
[ ∑

P 2∈P2
̸=∩(V1×T0⩽)2

δ±
s,t(P1)2δ±

s,t(P2)2
]

+ c4 E
[ ∑

P 2∈P2
̸=∩(V1×T0⩽)2

δ±
s,t(P1)3δ±

s,t(P2)
]

+ c5 E
[ ∑
P∈P∩V1×T0⩽

δ±
s,t(P )4

]
,

(D.24)

Table D.1: Maximum values of the exponents. We put the identical points into
the same set for each case.

Case (2)
identical P-points m1 m2 m3 m4 ma

{P1}, {P2, P3, P4} 0 2 – – 0
{P1}, {P2}, {P3, P4} 0 0 2 – 1
{P1}, {P2, P3}, {P4} 0 1 – 1 1
{P1}, {P2}, {P3}, {P4} 0 0 1 1 2

Case (3)
identical P-points m1 m2 m3 m4 ma

{P1, P3}, {P2, P4} 1 1 – – 0
{P1, P3}, {P2}, {P4} 1 0 – 1 1
{P1}, {P3}, {P2, P4} 0 1 1 – 1
{P1}, {P3}, {P2}, {P4} 0 0 1 1 2
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where Pm := (P1, . . . , Pm), {ci : i ∈ {4, . . . , 8}} ⊆ (0,∞) are real constants, and we
dropped the arguments t for brevity. The application of the Mecke formula to the
above expression yields

E
[(

∆±
1,n

)4]
= c1

∫
(V1×T0⩽)4

E
[∏
i⩽4

δ±
s,t(p1)

]
dp4 + c2

∫
(V1×T0⩽)3

E
[
δ±
s,t(p1)2δ±

s,t(p2)δ±
s,t(p3)

]
dp3

+ c3

∫
(V1×T0⩽)2

E
[
δ±
s,t(p1)2δ±

s,t(p2)2]
dp2 + c4

∫
(V1×T0⩽)2

E
[
δ±
s,t(p1)3δ±

s,t(p2)
]
dp2

+ c5

∫
V1×T0⩽

E
[
δ±
s,t(p)4]

dp,

(D.25)
where pm := (p1, . . . , pm). Each of the expectations in the integrands above can be
written in the form E

[∏Q
q=1 δ

±
s,t(pq)mq

]
, where Q ∈ {1, . . . , 4} is the number of terms

in the products and mq ∈ {1, . . . , 4} denote the exponents where
∑Q
q=1mq = 4. Then,

we bound the terms using Hölder’s inequality as follows:

E
[ Q∏
q=1

δ±
s,t(pq)mq

]
⩽

Q∏
q=1

E
[
δ±
s,t(pq)4]mq/4

. (D.26)

Recalling the definition of δ±
s,t(pq), to apply Mecke’s formula to its fourth moment

E
[
δ±
s,t(pq)4]

= E
[( ∑

P ′∈P ′

1{P ′ ∈ N±(pq; t) \N±(pq; s)}
)4]

,

we need to examine which of the four points in P ′ ∈ P ′ are equal. To do so, we generate
all the partitions of the four points P ′

1, . . . , P
′
4 consisting of Q′ groups, so that the

points in the same group are considered to be equal. Then, apart from combinatorial
symmetries, we arrive again at five different partition types of the four points that
we also used to distinguish the points in P above. In each case, Mecke’s formula
leads to |δs,t(N±(pq; t))|Q

′ , where Q′ ∈ {1, . . . , 4} denotes the number of groups in the
partition, i.e., the number of distinct points in {P ′

1, . . . , P
′
4}. Then,

E
[
δ±
s,t(pq)4]

⩽ c6
(
|δs,t(N±(pq))|+ |δs,t(N±(pq))|2

+ |δs,t(N±(pq))|3 + |δs,t(N±(pq))|4
) (D.27)

with some large enough constant c6 > 0. Substituting the above expressions to the
formula (D.26), the integrals in (D.25) can be bounded by∫

V1×T0⩽
|δs,t(N±(p))|m µ(dp) =

∫
V1
|Ns(ps)|m dps

∫
T0⩽
|δs,t(N±

t (pt))|m µt(dpt)

∈ O((t− s)m),

where m ∈ {1, 2, 3, 4}, and we applied Lemmas D.8.2 (a) and D.8.6 (c).

For Case (2), we bound the covariance term appearing in (D.20).
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Proof of Lemma D.10.6. First, note that∣∣Cov(∆±
i,n,∆

±
j,n∆±

k,n∆±
ℓ,n)

∣∣ ⩽ ∣∣Cov
(
E[∆±

i,n | P],E[∆±
j,n∆±

k,n∆±
ℓ,n | P]

)∣∣
+

∣∣E[
Cov

(
∆±
i,n,∆

±
j,n∆±

k,n∆±
ℓ,n

∣∣ P)]∣∣
=

∣∣E[
Cov

(
∆±
i,n,∆

±
j,n∆±

k,n∆±
ℓ,n

∣∣ P)]∣∣, (D.28)

where in the last step we used that the conditional expectations E[∆±
i,n | P] and

E[∆±
j,n∆±

k,n∆±
ℓ,n | P] are independent by the independence property of the Poisson

process P since Vi /∈ {Vj ,Vk,Vℓ}. Recalling the definition of ∆±
i,n,∆

±
j,n,∆

±
k,n,∆

±
ℓ,n, let

us upper bound the covariance using bilinearity:∣∣Cov(∆±
i,n,∆

±
j,n∆±

k,n∆±
ℓ,n | P)

∣∣
⩽

∣∣∣∣ ∑
σ1,σ2,σ3,σ4∈{s,t}

Cov(V ±
i (σ1), V ±

j (σ2)V ±
k (σ3)V ±

ℓ (σ4) | P)
∣∣∣∣

⩽
∑

σ1,σ2,σ3,σ4∈{s,t}
P1∈P∩(Vi∩T0⩽),P2∈P∩(Vj∩T0⩽)
P3∈P∩(Vk∩T0⩽),P4∈P∩(Vℓ∩T0⩽)

∣∣∣∣Cov
( deg±(P1;σ1),

deg±(P2;σ2) deg±(P3;σ3) deg±(P4;σ4)

∣∣∣∣ P)∣∣∣∣.
(D.29)

Expanding one of the covariance terms in the sum, we recognize that it is nonzero
only if P ′

1 ∈ {P ′
2, P

′
3, P

′
4}:∣∣∣Cov

(
deg±(P1;σ1),deg±(P2;σ2) deg±(P3;σ3) deg±(P4;σ4)

∣∣ P)∣∣∣
= E

[ ∑
{P ′

1,P
′
2,P

′
3,P

′
4}∈(P ′)4

P ′
1∈{P ′

2,P
′
3,P

′
4}

1{P ′
1 ∈ N±(P1;σ1)}1{P ′

2 ∈ N±(P2;σ2)}

× 1{P ′
3 ∈ N±(P3;σ3)}1{P ′

4 ∈ N±(P4;σ4)}
∣∣∣ P]

= E
[ ∑

{P ′
1,P

′
3,P

′
4}∈(P ′)3

1{P ′
1 ∈ N±(P1;σ1) ∩N±(P2;σ2)}

× 1{P ′
3 ∈ N±(P3;σ3)}1{P ′

4 ∈ N±(P4;σ4)}
∣∣∣ P]

,

(D.30)

where in the last step we assumed without loss of generality that P ′
1 = P ′

2, as the
formula above is symmetric in the indices j, k, ℓ. We need to distinguish several cases
depending on which of the points P ′

1, P
′
3, P

′
4 are identical: P ′

1 ̸= P ′
3 ̸= P ′

4, P ′
1 = P ′

3 ̸= P ′
4,

P ′
1 = P ′

4 ̸= P ′
3, P ′

1 ̸= P ′
3 = P ′

4 and P ′
1 = P ′

3 = P ′
4. Decomposing the covariance
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accordingly, we have that∣∣∣Cov
(
deg±(P1;σ1), deg±(P2;σ2) deg±(P3;σ3) deg±(P4;σ4)

∣∣ P)∣∣∣
= c1

∏
i∈{3,4}

E[deg±(Pi;σi) | P]E
[ ∑
P ′∈P

1

{
P ′ ∈

⋂
i∈{1,2}

N±(Pi;σi)
} ∣∣∣∣ P]

+ c2 E[deg±(P4;σ4) | P]E
[ ∑
P ′∈P ′

1

{
P ′ ∈

⋂
i∈{1,2,3}

N±(Pi;σi)
} ∣∣∣∣ P]

+ c3 E[deg±(P3;σ3) | P]E
[ ∑
P ′∈P ′

1

{
P ′ ∈

⋂
i={1,2,4}

N±(Pi;σi)
} ∣∣∣∣ P]

+ c4 E
[ ∑
P ′∈P ′

1

{
P ′ ∈

⋂
i∈{1,2}

N±(Pi;σi)
} ∣∣∣∣ P]

E
[ ∑
P ′∈P ′

1

{
P ′ ∈

⋂
i∈{3,4}

N±(Pi;σi)
} ∣∣∣∣ P]

+ c5 E
[ ∑
P ′∈P ′

1

{
P ′ ∈

⋂
i∈{1,2,3,4}

N±(Pi;σi)
} ∣∣∣∣ P]

,

(D.31)
where c1, . . . , c5 > 0 are some coefficients. Next, we apply the Mecke formula to the
above expression:∣∣∣Cov

(
deg±(P1;σ1),deg±(P2;σ2) deg±(P3;σ3) deg±(P4;σ4)

∣∣ P)∣∣∣
= |N±(P1;σ1) ∩N±(P2;σ2)||N±(P3;σ3)||N±(P4;σ4)|

+ |N±(P1;σ1) ∩N±(P2;σ2)||N±(P3;σ3) ∩N±(P4;σ4)|
+ |N±(P1;σ1) ∩N±(P2;σ2) ∩N±(P3;σ3)||N±(P4;σ4)|
+ |N±(P1;σ1) ∩N±(P2;σ2) ∩N±(P4;σ4)||N±(P3;σ3)|
+ |N±(P1;σ1) ∩N±(P2;σ2) ∩N±(P3;σ3) ∩N±(P4;σ4)|

⩽ |N±(P1;σ1) ∩N±(P2;σ2)|(|N±(P3;σ3)|+ 2)(|N±(P4;σ4)|+ 2)
=: A(P 4,σσσ4),

(D.32)

where we bounded by neglecting some intersecting sets, and set P 4 := (P1, P2, P3, P4),
σσσ4 := (σ1, σ2, σ3, σ4).

D.11 Proofs of the propositions and lemmas used to
prove Theorem D.2.6

In this section, we first show the main propositions that were used in the proof of
Theorem D.2.6.

Proofs of the propositions and lemmas used in Steps 1 and 2 of the
proof of Theorem D.2.6

We begin with proving that the high-mark edge count S⩾
n is negligible compared to

the total edge count Sn, which Step 1 of the proof required. The proof strategy is the
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same as in the proof of Theorem D.2.4 above, and we show convergence of S⩾
n to 0 in

the Skorokhod topology using the plus-minus decomposition.

Proof of Proposition D.7.2. We apply again [26, Theorem 2] to the plus-minus decom-
position of S⩾

n (t), and verify the three conditions of the theorem. We first define

S⩾,+
n (t) :=

∑
P∈P∩(Sun⩽

n ×T0⩽)

deg+(P ; t) and

S⩾,−
n (t) :=

∑
P∈P∩(Sun⩽

n ×T0⩽)

deg−(P ; t),

and we use the notation S⩾,±
n (t) whenever we refer to both S⩾,+

n (t) and S⩾,−
n (t)

together.
For Condition (1), we would like to show that for all t1, . . . , tm ∈ [0, 1] and ε2 > 0,

lim
n↑∞

P
(∥∥(

S
⩾,±
n (t1), . . . , S⩾,±

n (tm)
)∥∥

∞ > ε2
)

= lim
n↑∞

P
(

max
i∈{1,...,m}

(
S
⩾,±
n (ti)

)
> ε2

)
= 0.

We bound the probability of the maximum by the sum of the probabilities of the
individual events, and then apply Chebyshev’s inequality:

P
(

max
1⩽i⩽m

(
S
⩾,±
n (ti)

)
> ε2

)
⩽

m∑
i=1

P
(
S
⩾,±
n (ti) > ε2

)
⩽
mn−2γ

ε2
2

Var
(
S⩾,±
n (t)

)
.

Thus, we need to show the following lemma.

Lemma D.11.1 (Variance of the high-mark edge count S⩾,±
n (t)). If γ > 1/2 and

γ′ < 1/2, then
Var

(
S⩾,±
n (t)

)
∈ o(n2γ).

Then, the finite-dimensional distributions of S⩾
n converge to 0.

To verify Condition (2), we follow closely the arguments in the proof of The-
orem D.2.4 for S⩾,±

n in place of S±
n . This time, we set χ1 := 4, χ2 := 1 + η

with η = 1/3, and an := n−1/2 also differs from the thin-tailed case. We define
∆⩾,±
n (s, t) := S⩾,±

n (t)− S⩾,±
n (s), and we would like to show that if t− s > n−1/2, then

E
[
(∆⩾,±

n (s, t)− E[∆⩾,±
n (s, t)])4]

= κ4
(
∆⩾,±
n (s, t)

)
+ 3 Var

(
∆⩾,±
n (s, t)

)2

∈ O(n4γ(t− s)1+η).

We state the following lemma to bound the variance term.

Lemma D.11.2 (Variance of the change of high-mark edge count ∆⩾,±
n (s, t)). If

γ > 1/2 and γ′ < 1/2, then

Var
(
∆⩾,±
n (s, t)

)
∈ O(n2γ(t− s)(1+η)/2).
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Then, Var(∆⩾,±
n (s, t))2 ∈ O(n4γ(t − s)1+η). Turning our attention to the fourth

cumulant, we would like to show that κ4(∆⩾,±
n (s, t)) ∈ O(n4γ(t − s)1+η) whenever

t − s > n−1/2. We begin by partitioning the domain Sun⩽
n to n disjoint blocks

Vun⩽
i := Sun⩽

[i−1,i] (i ∈ {1, . . . , n}), and we introduce

V ⩾,±
i (t) :=

∑
P∈P∩(Vun⩽

i ×T0⩽)

deg±(P ; t), S⩾,±
n (t) =

n∑
i=1

V ⩾,±
i (t),

∆⩾,±
i,n (s, t) := V ⩾,±

i (t)− V ⩾,±
i (s), ∆⩾,±

n (s, t) =
n∑
i=1

∆⩾,±
i,n (s, t),

which are again monotone functions of t. The multilinearity of the cumulant will lead
to ∣∣κ4(∆⩾,±

n )
∣∣ ⩽ c1

n∑
i,j,k,ℓ=1

∣∣κ4
(
∆⩾,±
i,n ,∆⩾,±

j,n ,∆
⩾,±
k,n ,∆

⩾,±
ℓ,n

)∣∣,
with some constant c1 > 0, and we dropped the arguments (s, t) for brevity. We
partition the indices again and define ρ⩾(i, j, k, ℓ) as in (D.12) with the blocks
{Vun⩽

i ,Vun⩽
j ,Vun⩽

k ,Vun⩽
ℓ } in place of {Vi,Vj ,Vk,Vℓ}. Then, we distinguish three

cases based on the distance of the blocks Vun⩽
i ,Vun⩽

j ,Vun⩽
k ,Vun⩽

ℓ the same way as in
the proof of Theorem D.2.4, which we treat separately.

Case (1⩾) ρ⩾(i, j, k, ℓ) = 0, i.e., i = j = k = ℓ;

Case (2⩾) ρ⩾(i, j, k, ℓ) = dist(Vun⩽
i , {Vun⩽

j ,Vun⩽
k ,Vun⩽

ℓ }) > 0,
and diam({Vun⩽

j ,Vun⩽
k ,Vun⩽

ℓ }) ⩽ ρ⩾(i, j, k, ℓ) + 1;

Case (3⩾) ρ⩾(i, j, k, ℓ) = dist({Vun⩽
i ,Vun⩽

k }, {Vun⩽
j ,Vun⩽

ℓ }) > 0,
and dist(Vun⩽

i ,Vun⩽
j ) ∨ dist(Vun⩽

k ,Vun⩽
ℓ ) ⩽ ρ⩾(i, j, k, ℓ).

The following lemma summarizes the orders of the cumulant term |κ4(∆⩾,±
n (s, t))|.

Lemma D.11.3 (Order of the cumulant term |κ4(∆⩾,±
n (s, t))|). Let γ > 1/2 and

γ′ < 1/4. We have for 0 ⩽ s < t ⩽ 1 the orders of the cumulant term |κ4(∆⩾,±
n (s, t))| ∈

O(n4γ(t− s)1+η) in the three cases Case (1⩾), Case (2⩾), and Case (3⩾).

Thus, considering all the three cases
∣∣κ4(∆⩾,±

n (s, t))
∣∣ ∈ O(n4γ(t−s)1+η) if t−s > n−1/2.

Finally, Condition (3) is fulfilled if the following lemma holds.

Lemma D.11.4 (Bound on the expectation of the increments of S±
n (t)). Let tk :=

kn1/(1+η), and let γ > 1/2 and γ′ ∈ (0, 1). Then, for all ε > 0,

lim
n↑∞

max
k⩽⌊n1/2⌋

{
n−γ E

[
∆⩾,±
n (tk, tk+1)

]}
= 0.

We conclude that if n→∞, we can approximate Sn(t) by the edge count of the
low-mark vertices S(1)

n (t) for all t ∈ [0, 1].
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The proofs of the lemmas used to show that the finite-dimensional distributions of
the high-mark edge count S⩾

n converge to 0 are similar to the proofs of the lemmas in
the proof of Theorem D.2.4. Thus, we shift the proofs of the lemmas to Appendix D.B.

Next, we show that we can approximate the low-mark edges by applying Cheby-
shev’s inequality, which was the goal of Step 2 of the proof. We aim to bound the
difference of the low-mark edge count S(1)

n and its approximation S(2)
n by bounding

the supremum of the difference.

Proof of Proposition D.7.4. Note that ∥S(1)
n − S(2)

n ∥ = n−γ∥S(1)
n − S(2)

n ∥. We define
and bound the error term E as follows:

E := P
(
n−γ∥S(1)

n − S(2)
n ∥ ⩾ ε4

)
⩽ P

(
sup
t∈[0,1]

∑
P∈P∩S⩽un

n ×T

∣∣∣deg(P ; t)− E
[
deg(P ; t)

∣∣ P]∣∣∣ ⩾ ε4n
γ
)

⩽ ε−1
4 n−γ E

[
sup
t∈[0,1]

∑
P∈P∩S⩽un

n ×T

∣∣∣deg(P ; t)− E
[
deg(P ; t)

∣∣ P]∣∣∣],
where we used Markov’s inequality. We now upper bound the supremum of the sum
by the sum of the suprema, and apply the Mecke formula to obtain:

E ⩽ ε−1
4 n−γ

∫
S⩽un

n ×T
E

[
sup
t∈[0,1]

∣∣∣deg(p; t)− E
[
deg(p; t)

]∣∣∣]µ(dp)

⩽ ε−1
4 n−γ

∫
S⩽un

n ×T
E

[(
sup
t∈[0,1]

∣∣∣deg(p; t)− E
[
deg(p; t)

]∣∣∣)2]1/2
µ(dp),

where we applied Jensen’s inequality to the expectation inside the integral in the last
step. Note that if b > 1 or b+ ℓ < 0, then deg(p; t) = 0, and thus the supremum is 0.
Therefore, we can assume that b ⩽ 1 and b+ ℓ ⩾ 0, and we restrict the supremum to
the interval [0 ∨ b, 1 ∧ (b+ ℓ)]:

E ⩽ ε−1
4 n−γ

∫
S⩽un

n ×T0⩽
⩽1

E
[(

sup
t∈[0∨b,1∧(b+ℓ)]

∣∣∣deg(p; t)− E
[
deg(p; t)

]∣∣∣)2]1/2
µ(dp).

Since the process deg(p; t) − E[deg(p; t)] is a martingale, the application of Doob’s
inequality [62, Theorem 1.3.8 (iv)] yields

E ⩽ 2ε−1
4 n−γ

∫
S⩽un

n ×T0⩽
⩽1

E
[(

deg(p; 1 ∧ (b+ ℓ))− E
[
deg(p; 1 ∧ (b+ ℓ))

])2]1/2
µ(dp).

As deg(p; 1 ∧ (b+ ℓ)) is Poisson distributed with expectation E[deg(p; 1 ∧ (b+ ℓ)) | p],
we have

E ⩽ 2ε−1
4 n−γ

∫
S⩽un

n ×T0⩽
⩽1

(
E

[
deg(p; 1 ∧ (b+ ℓ))

])1/2
µ(dp).

Noting that E[deg(p; 1 ∧ (b+ ℓ)) | p] = |N(p; 1 ∧ (b+ ℓ))|, we calculate the integral:

E ⩽ 2ε−1
4 n−γ

∫
S⩽un

n

|Ns(ps)|1/2 d(x, u)
∫
T0⩽
⩽1

|Nt(pt; 1 ∧ (b+ ℓ))|1/2 µt(dpt).
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We apply Lemma D.8.2 (a) to the spatial integral:∫
S⩽un

n

|Ns(ps)|1/2 dps =
( 2β

1− γ′

)1/2 2
1− γ/2nu

1−γ/2
n ∈ O(n(1+γ)/3),

where, in the last step, we do not need to impose any constraints on γ, and we used
that un = n−2/3. The temporal integral can be calculated as follows:∫

T0⩽
⩽1

|Nt(pt; 1 ∧ (b+ ℓ))|1/2 µt(dpt)

=
∫
T0⩽
⩽1

(
(1 ∧ (b+ ℓ))− b

)1/2
1{b ⩽ 1 ∧ (b+ ℓ) ⩽ b+ ℓ}µt(d(b, ℓ))

=
∫
T0⩽
⩽1

((1− b) ∧ ℓ)1/2 µt(d(b, ℓ)) =
∫ ∞

0

∫ 1−ℓ

ℓ
ℓ1/2 db+

∫ 1

1−ℓ
(1− b)1/2 dbPL(dℓ)

⩽
∫ ∞

0

∫ 1

ℓ
ℓ1/2 dbPL(dℓ) =

∫ ∞

0
(1 + ℓ)ℓ1/2 PL(dℓ) = Γ(3/2) + Γ(5/2),

where we used that the indicator does not affect the integral in the second step, and
split the integration domain with respect to b to [ℓ, 1− ℓ] and b ∈ [1− ℓ, 1] in the third
step. Combining the spatial and temporal integrals, we obtain

E ⩽
4

ε4(1− γ/2)
(
Γ

(3
2

)
+ Γ

(5
2

))( 2β
1− γ′

)1/2
n−(2γ−1)/3 ∈ o(1),

as desired.

Proofs of propositions and lemmas used in Steps 3, 4, and 5 of the
proof of Theorem D.2.6

In Step 3, we introduced the edge count S(3)
n,ε to represent the edges of vertices with

marks less than 1/(nε). The following proof show that its plus-minus decomposition
S(3),±
n,ε converges to S(2),±

n ( · ) as ε→ 0 uniformly for all n. This is done by bounding
the supremum norm of the difference of the two edge counts. For the minus part, we
recognize that the difference is the supremum of a martingale, and we apply Doob’s
inequality to bound the difference. For the plus part, we write the S(3),+

n,ε (t) as a sum
of the integrals of the neighborhoods to bound the supremum.

Proof of Proposition D.7.5. We prove the two cases separately.

Minus case. We consider the minus case first. For a point (X,U,B,L) ∈ P, we
introduce the notation D := B+L for the death coordinate. The birth coordinates {Bi}
constitute a Poisson point process with intensity measure Leb. Since {Li} is also
a Poisson point process with intensity measure PL, by the displacement theorem
[66, Exercise 5.1], {Di} is also a Poisson point process on R with intensity measure
Leb ∗PL = Leb. The set of points {(Di, Li)}i∈N is a Poisson point process PPP(Leb⊗
PL) on T, and we transform the point process P into a point process P− on S ×
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T with intensity measure µ by replacing the coordinates {Bi} with {Di}. Using
Lemmas D.8.1 (a) and D.8.5 (a), |N−(P ; t)| = c̃U−γL1{D ⩽ t}. Then, we have

S(3),−
n,ε (t) = c̃

∑
P∈P−∩(S⩽1/(εn)

n ×T)

U−γL1{D ∈ [0, t]}.

We proceed similarly to Step 2:

E−
1 := lim

ε↓0
lim sup
n↑∞

P
(

sup
t∈[0,1]

∣∣∣S(3),−
n,ε (t)− S(2),−

n (t)− E[S(3),−
n,ε (t)− S(2),−

n (t)]
∣∣∣ > nγδ

)
= lim

ε↓0
lim sup
n↑∞

P
(

sup
t∈[0,1]

∣∣∣∣ ∑
P∈P∩(S1/(εn)⩽

n ×T0⩽)

|N−(P ; t)|

− E
[ ∑
P∈P∩(S1/(εn)⩽

n ×T0⩽)

|N−(P ; t)|
]∣∣∣∣ > nγδ

)
,

where only the high-mark vertices are considered in the sums. The expectation is
calculated using the Mecke formula:

E
[ ∑
P∈P−∩(S1/(εn)⩽

n ×T)

U−γL1{D ∈ [0, t]}
]

=
∫
S1/(εn)⩽

n ×T
u−γℓ1{w ∈ [0, t]} dx dudbPL(dℓ)

=
∫ n

0

∫ 1

1/(εn)

∫ t

0

∫ ∞

0
u−γℓPL(dℓ) dw du dx = nt

1− γ
(
1− (εn)−(1−γ)).

Using the above, we write

Mn(t) :=
∑

P∈P−∩(S1/(εn)⩽
n ×T)

U−γL1{D ∈ [0, t]} − nt

1− γ
(
1− (εn)−(1−γ)),

E−
1 ⩽ lim

ε↓0
lim sup
n↑∞

P
(

sup
t∈[0,1]

∣∣Mn(t)
∣∣ > c̃−1nγδ

)
,

where only the high-mark vertices are considered in Mn(t). Note that Mn(t) is a
martingale, since the points are independent. To see this, let us introduce (Ft)t⩾0 for
the filtration generated by the points in P− up to time t, and let s, t ∈ [0, 1] be two
time points such that s ⩽ t. Then, the expectation of the increments conditioned on
the sigma-algebra Fs is given by

E
[
Mn(t)−Mn(s)

∣∣ Fs] =E
[ ∑
P∈P−∩(S1/(εn)⩽

n ×T)

U−γL1{D ∈ [s, t]}
∣∣∣ Fs]

− n(t− s)
1− γ

(
1− (εn)−(1−γ)) = 0,

where in the last step we recognized that the expectation is 0, since the points are
independent. This shows that Mn(t) is a martingale with respect to the filtration Ft
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generated by the points in P− up to time t. Then, Doob’s martingale inequality gives
that

E−
1 ⩽ lim

ε↓0
lim sup
n↑∞

c̃n−γδ−1E
[∣∣∣ ∑
P∈P−∩(S1/(εn)⩽

n ×T)

U−γL1{D ∈ [0, 1]}

− n

1− γ
(
1− (εn)−(1−γ))∣∣∣].

The expectation contains the absolute difference of a random variable and its expecta-
tion; thus, Jensen’s inequality gives that

E−
1 ⩽ lim

ε↓0
lim sup
n↑∞

c̃n−γδ−1 Var
( ∑
P∈P−∩(S1/(εn)⩽

n ×T)

U−γL1{D ∈ [0, 1]}
)1/2

.

We calculate the variance similarly to (D.9). Then, since D = B + L, the Mecke
formula gives

Var
( ∑
P∈P−∩(S1/(εn)⩽

n ×T)

U−γL1{B + L ∈ [0, 1]}
)

=
∫
S1/(εn)⩽

n ×T
u−2γℓ2 1{b+ ℓ ∈ [0, 1]} dx dudbPL(dℓ)

= n

∫ 1

1/(εn)∧1
u−2γ du

∫ ∞

0
ℓ2 PL(dℓ) = 2n

2γ − 1
(
(εn ∨ 1)2γ−1 − 1

)
,

(D.33)

where, in the first step, we used that the covariance part of the expression for two
distinct points is 0. Then, the bound for E−

1 becomes

E−
1 ⩽ c1 lim

ε↓0
lim sup
n↑∞

n−γ
(
n

(
(εn ∨ 1)2γ−1 − 1

))1/2

= c1 lim
ε↓0

lim sup
n↑∞

(
(ε ∨ 1/n)2γ−1 − n−(2γ−1)

)1/2
= c1 lim

ε↓0
εγ−1/2 = 0,

where c1 = c̃δ−1(2/(2γ − 1))1/2, since γ > 1/2.

Plus case. Next, we consider the plus case. As for the minus case, we define

E+
1 := lim

ε↓0
lim sup
n↑∞

P
(∥∥S(3),+

n,ε − S(2),+
n

∥∥ > δ
)
.

First, we examine the edge count S(3),+
n,ε ( · ) = n−γ(S(3),+

n,ε ( · )− E[S(3),+
n,ε ( · )]). Noting

that
|N+

t (Pt; t)| =
(
((B + L) ∧ t)−B

)
1{B ⩽ t} and

d
dt |N

+
t (Pt; t)| = 1{t ∈ [B,B + L]},

we see that S(3),+
n,ε (t) is a continuous, monotone increasing function of t, which we write

as an integral over the interval [0, t] as follows:

S(3),+
n,ε (t) =

∑
P∈P∩(S⩽1/(εn)

n ×T0⩽)

|N+(P ; t)|

= S(3),+
n,ε (0) +

∫ t

0

∑
P∈P∩(S⩽1/(εn)

n ×T0⩽)

d
dt′ |N

+(P ; t′)|dt′.
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We define the edge count Hn,ε(t) that considers the vertices with higher marks
than 1/(εn):

Hn,ε(t) :=
∑

P∈P∩(S1/(εn)⩽
n ×T0⩽)

d
dt |N

+(P ; t)|, (D.34)

where we note that the interval of allowed marks [1/(εn), 1] is the complement
of [0, 1/(εn)] taken into account in the edge count S(3),+

n,ε (t). Then,

E+
1 = lim

ε↓0
lim sup
n↑∞

P
(

sup
t∈[0,1]

∣∣∣S(3),+
n,ε (0)−S(2),+

n (0)+n−γ
∫ t

0
Hn,ε(t′)−E[Hn,ε(t′)] dt′

∣∣∣ > δ

)
.

The application of the triangle inequality and the union bound gives

E+
1 ⩽ lim

ε↓0
lim sup
n↑∞

(
P

(∣∣S(3),+
n,ε (0)− S(2),+

n (0)
∣∣ > δ/2

)
+ P

(
sup
t∈[0,1]

∣∣∣∫ t

0
Hn,ε(t′)− E[Hn,ε(t′)] dt′

∣∣∣ > nγδ/2
))
.

We apply Chebyshev’s inequality to the first term:

P
(∣∣S(3),+

n,ε (0)− S(2),+
n (0)

∣∣ > δ/2
)
⩽ 4δ−2n−2γ Var

(
S(3),+
n,ε (0)− S(2),+

n (0)
)

= 4δ−2n−2γ E
[ ∑
P∈P∩(S1/(εn)⩽

n ×T0⩽)

|N+(P ; 0)|2
]

= 4δ−2n−2γ
∫
S1/(εn)⩽

n ×T0⩽
|N+(p; 0)|2 µ(dp)

= 8c̃2δ−2

2γ − 1n
−(2γ−1)(((εn)2γ−1 ∨ 1)− 1

)
where we used that the covariance part of the expression for two distinct points is 0 in
the second step, and applied Lemmas D.8.2 (a) and D.8.6 (a) for the spatial and the
temporal parts, respectively, in the third step. Then, for the first term, we have

lim
ε↓0

lim sup
n↑∞

P
(∣∣S(3),+

n,ε (0)− S(2),+
n (0)

∣∣ > δ/2
)

= 8c̃2δ−2

2γ − 1 lim
ε↓0

ε2γ−1 = 0.

Next, we consider the second term. We apply the triangle inequality to push the
absolute value inside the integral, and then we use that supt∈[0,1]

∫ t
0 | · |dt̃ ⩽

∫ 1
0 | · |dt:

P
(

sup
t∈[0,1]

∫ t

0

∣∣Hn,ε(t′)− E[Hn,ε(t′)]
∣∣ dt′ > nγδ/2

)
⩽ P

(∫ 1

0

∣∣Hn,ε(t′)− E[Hn,ε(t′)]
∣∣ dt′ > nγδ/2

)
⩽ 2δ−1n−γ

∫ 1

0
E

[∣∣Hn,ε(t′)− E[Hn,ε(t′)]
∣∣] dt′

⩽ 2δ−1n−γ
∫ 1

0
Var

(
Hn,ε(t′)

)1/2 dt′,
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where we applied Markov’s inequality in the first step and Jensen’s inequality in the
second step. The variance is calculated using Lemmas D.8.2 (a) and D.8.6 (a) as
above:

Var
(
Hn,ε(t′)

)
=

∫
S1/(εn)⩽

n ×T0⩽
|N+(p; t′)|2 µ(dp) = 2c̃2

2γ − 1n
(
((εn)2γ−1 ∨ 1)− 1

)
(t′ + 1).

Then, we have

lim
ε↓0

lim sup
n↑∞

P
(

sup
t∈[0,1]

∫ t

0

∣∣Hn,ε(t′)− E[Hn,ε(t′)]
∣∣ dt′ > nγδ/2

)
⩽ lim

ε↓0
lim sup
n↑∞

(
c2n

−(γ−1/2)(((εn)2γ−1 ∨ 1)− 1
)1/2

∫ 1

0
(t′ + 1)1/2 dt′

)
= c3 lim

ε↓0

(
εγ−1/2)

= 0,

where c2 = 2c̃δ−1(2/(2γ − 1))1/2 and c3 = c2(4
√

2− 1)/3. Thus, we have shown that
E+

1 = 0, and thus E1 = 0.

In the following, we present the results required for Steps 4 and 5 in the proof of
Theorem D.2.6.

In the next proof, we show that nP(n−γ |Ns(Ps)| ∈ [ · ,∞)) converges to a measure
in the vague topology as n→∞.

Proof of Lemma D.7.6. First, for a > 0, we have

lim
n↑∞

nP
(
n−γ |Ns(Ps)| ⩾ a

)
= lim

n↑∞
nP

(
c̃n−γU−γ ⩾ a

)
= lim

n↑∞
nP

(
U ⩽

(
anγ/c̃

)−1/γ)
= lim

n↑∞
n

(
anγ/c̃

)−1/γ = c̃1/γa−1/γ =: ν([a,∞)),

where we applied Lemma D.8.1 (a). Note that ν( · ) is totally skewed to the right,
since ν((−∞, 0]) = 0.

Remark D.11.5. The measure ν is a Lévy measure, since it is nonnegative, ν( · ) = 0
for any set of Lebesgue measure 0, and∫ 1

0
|a|2ν(da) = 2c̃1/γ

∫ 1

0
aa−1/γ da = 2c̃1/γγ

2γ − 1 <∞ and∫ ∞

1
dν = ν([1,∞)) = c̃1/γ <∞,

where we used that γ > 1/2 for the finiteness of the first integral.

In (D.7), we defined the summation functional, which was used to define S∗
ε ( · ). To

show convergence of S(3)
n,ε( · ) to S∗

ε ( · ), we need to show that the summation functional
is continuous with respect to the Skorokhod metric dSk. As the proof is similar to the
proof of the continuity of the summation functional in [93, Section 7.2.3], we present
the proof in Appendix D.C.

In the last part of Step 4, we show that the expectation of S∗
ε ( · ) is finite.
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Proof of Lemma D.7.8. Applying the Mecke formula to the expectation of S∗
ε , we have

E
[
S∗
ε (t)

]
= E

[ ∑
(J,B,L)∈P∞

J(t−B)1{J ⩾ c̃εγ}1{B ⩽ t ⩽ B + L}
]

=
∫ ∞

c̃εγ
j ν(dj)

∫
Tt⩽
⩽t

(t− b)µt(d(b, ℓ)),

where we used the fact that J is independent of (B,L), and ν is the intensity measure
of J . The first integral can be calculated using the definition of ν as follows:∫ ∞

c̃εγ
j ν(dj) = c̃1/γ

γ

∫ ∞

c̃εγ
j−1/γ dj = c̃

1− γ ε
−(1−γ).

The temporal integral is the integral of the size of the temporal neighborhood at time t;
thus, the application of Lemma D.8.4 (a) gives that the second integral is equal to 1,
which concludes the proof.

Step 5 is about showing the convergence of S∗
ε( · ) to S( · ) as ε→ 0. We claimed

that the edge count S∗
ε(t) converges to S(t) for a fixed time point t, which is shown in

the following proof, following the arguments presented in [93, Section 5.5.1].

Proof of Lemma D.7.9. Let us define the strictly decreasing sequence of εi → 0 such
that 1 = ε0 > ε1 > ε2 > · · · , and let Ii+1 := [εi+1, εi]. We also define the edge count
where the jump size is restricted to the interval Ii+1 as

S∗
Ii+1(t) :=

∑
(J,B,L)∈P∞

J(t−B)1{J ∈ Ii+1}1{B ⩽ t ⩽ B + L}

S
∗
Ii+1(t) := S∗

Ii+1(t)− E
[
S∗
Ii+1(t)

]
.

The expectation is calculated using the Mecke formula:

E
[
S∗
Ii+1(t)

]
=

∫
Ii+1

j ν(dj)
∫ t

−∞
(t− b)

∫ ∞

t−b
PL(dℓ) db = c1

(
ε

−(1/γ−1)
i+1 − ε−(1/γ−1)

i

)
,

where we used the definition of the intensity measure ν, and c1 := c̃1/γ/(1− γ). Note
that the variance of the edge count S∗

Ii+1
(t) is given by

Var(S∗
Ii+1(t)) =

∫
Ii+1

j2ν(dj)
∫ t

−∞
(t− b)2

∫ ∞

t−b
PL(dℓ) db = 2c̃1/γ

2γ − 1
(
ε

2−1/γ
i − ε2−1/γ

i+1
)
,

where we used the fact that the points are independent. Then, again by independence,∑∞
i=0 Var(S∗

Ii+1
(t)) = 2c̃1/γ/(2γ − 1) < ∞, since ε0 = 1 and γ > 1/2. By the Kol-

mogorov convergence criterion [61, Lemma 5.16], we have that
∑∞
i=0 S

∗
Ii+1

(t) converges
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almost surely, and
∞∑
i=0

S
∗
Ii+1(t) =

∞∑
i=0

( ∑
(J,B,L)∈P∞

J(t−B)1{J ∈ Ii+1}1{B ⩽ t ⩽ B + L}

− c1
(
ε

−(1/γ−1)
i+1 − ε−(1/γ−1)

i

))
= lim

ε↓0

( ∑
(J,B,L)∈P∞

J(t−B)1{J ∈ [ε, 1]}1{B ⩽ t ⩽ B + L}

− c1
(
ε−(1/γ−1) − 1

))
.

Next, for large jumps, we set

S∗
0(t) :=

∑
(J,B,L)∈P∞

J(t−B)1{J ⩾ 1}1{B ⩽ t ⩽ B + L}

E
[
S∗

0(t)
]

= c1 <∞,

where we used similar arguments as above to calculate the expectation. Since the
expectation is finite, the sum is almost surely finite. Defining the centered version, we
then have S∗

0(t) := S∗
0(t)− E[S∗

0(t)]. Using the above, for a fixed time point t, we have

S(t) = lim
ε↓0

S
∗
ε(t) = S

∗
0(t) +

∞∑
i=0

S
∗
Ii+1(t)

= lim
ε↓0

( ∑
(J,B,L)∈P∞

J(t−B)1{J ⩾ ε}1{B ⩽ t ⩽ B + L} − c1ε
−(1/γ−1)

)
,

which converges almost surely.

Finally, the proofs showing that S∗
εn

is Cauchy in probability and almost surely
with respect to the uniform convergence is postponed to Appendix D.C, since the
proof of the Cauchy property in probability is very similar to the arguments presented
in Step 3. The proof of the Cauchy property almost surely follows the same approach
as the proof of Property 2 in [93, Proposition 5.7].

D.12 Proofs of the minor lemmas
Finally, we present the proofs of the minor lemmas stated at the beginning of this
section.

Proof of Lemma D.8.1. Here, we calculate the size of the spatial neighborhoods of
points.

Part (a). The size of the spatial neighborhood of a point ps := (x, u) ∈ S is given by

|Ns(ps)| =
∫
S
1{p′

s ∈ N(ps)} dp′
s =

∫
S
1{|z − x| ⩽ βu−γw−γ′} d(z, w) = 2β

1− γ′u
−γ ,

where we used the notation p′ := (z, w, r) as usual.
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Part (b). We write the size of the common spatial neighborhood of points p1 and p2
as an integral:

|Ns(ps,1, ps,2)| =
∫
S
1

{
|x1 − z| ⩽ βu−γ

1 w−γ′}
1

{
|x2 − z| ⩽ βu−γ

2 w−γ′} d(z, w).

Next, we introduce ρ := |x1 − x2| ⩽ |x1 − z| + |x2 − z|, where we used the triangle
inequality. We assume that |x1−z| ⩾ ρ/2. As the bound is symmetric in the indices 1, 2,
we have the same bound in the case |x2 − z| ⩾ ρ/2. Then,

|Ns(ps,1, ps,2)| ⩽
∫
S
1

{
ρ/2 ⩽ βu−γ

1 w−γ′}
1

{
|x2 − z| ⩽ βu−γ

2 w−γ′} d(z, w).

The first indicator represents an upper bound on w:

ρ/2 ⩽ βu−γ
1 w−γ′ ⇐⇒ w ⩽ (2β)1/γ′

ρ−1/γ′
u

−γ/γ′

1 =: r(ρ, u1).

Using these, we integrate with respect to z and the integral can be bounded as

|Ns(ps,1, ps,2)| ⩽ 2βu−γ
2

∫ r(ρ,u1)

0
w−γ′ dw = 2β

1− γ′u
−γ
2 r(ρ, u1)1−γ′

= (2β)1/γ′

1− γ′ ρ
−(1/γ′−1)u

−(1/γ′−1)γ
1 u−γ

2 ⩽
(2β)1/γ′

1− γ′ ρ
−(1/γ′−1)u

−γ/γ′

1 u
−γ/γ′

2 .

Thus, we obtain the desired bound.

Part (c). The size of the neighborhood of a point p′
s := (z, w) ∈ S is given by∫

Su−⩽
1{p′

s ∈ Ns(ps)} dps =
∫
Su−⩽

1{|x− z| ⩽ βu−γw−γ′} d(x, u)

= 2βw−γ′
∫ 1

u−
u−γ du = 2β

1− γw
−γ′(1− u1−γ

−
)
,

as desired.

Proof of Lemma D.8.2. We calculate the integrals one by one.

Part (a). The integral is calculated as follows:∫
Su−⩽

A

|Ns(ps)|α dps =
( 2β

1− γ′

)α ∫
Su−⩽

A

u−αγ d(x, u)

=


(

2β
1−γ′

)α |A|
1−αγ

(
1− u1−αγ

−

)
if γ ̸= 1/α(

2β
1−γ′

)α
|A| log

(
u−1

−
)

if γ = 1/α.

If u− = 0, then the integral with respect to u requires that γ < 1/α.
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Part (b). If m = 1, we apply Lemma D.8.2 (a) to see that the lower and upper
bounds match. Thus, we assume that m > 1. Then,

I :=
∫
Sm

n

|Ns(ps,m)| dps,m

=
∫
Sn

∫
S
1{p′

s ∈ Ns(ps,1)}
(∫

Sn

1{p′
s ∈ Ns(ps)} dps

)m−1
dp′

s dps,1.

(D.35)

To show an upper bound Iupper, the inner integral can be bounded using Lemma D.8.1 (c)
after extending the integration domain from Sn to S:

I ⩽ Iupper =
∫
Sn

∫
S
1{p′

s ∈ Ns(ps,1)}
(∫

S
1{p′

s ∈ Ns(ps)} dps

)m−1
dp′

s dps,1

= cm−1
1

∫
Sn

∫
S
w−(m−1)γ′

1{|x1 − z| ⩽ βu−γ
1 w−γ′} d(z, w) d(x1, u1)

= 2βcm−1
1

∫
Sn

u−γ
1

∫ 1

0
w−mγ′ dw d(x1, u1) = cm1

1−mγ′ n,

(D.36)

where c1 := 2β/(1 − γ). Then, lim supn↑∞ I/n ⩽ limn↑∞ Iupper/n, which gives the
upper bound

lim sup
n↑∞

1
n

∫
Sm

n

|Ns(ps,m)|dps,m ⩽
(2β)m

(1− γ)m(1−mγ′) ,

as mentioned in the lemma. For the lower bound, let us set the error term E > 0
such that I = Iupper − E. We would like to show that limn↑∞E/n = 0 since then
limn↑∞ I/n = limn↑∞ Iupper/n−limn↑∞E/n = limn↑∞ Iupper/n. In Iupper, let us assume
without loss of generality that p1 ∈ pm is the point which is furthest from the point p′,
i.e., |x1 − z| ⩾ maxi∈{2,...,m}|xi − z|. Then, due to symmetry,

I = m

∫
Sn

∫
S
1{(z, w) ∈ Ns(x1, u1)}

(∫
S
1{(z, w) ∈ Ns(x, u)}

× 1{|x− z| ⩽ |x1 − z|}d(x, u)
)m−1

d(z, w) d(x1, u1)− E,

and the lower bound matches the upper bound. Note that E ̸= 0 only if there is at
least one point p∗ ∈ pm \ {p1} for which x∗ /∈ [0, n]. Then,
E

m
⩽

∫
Sn

∫
S

∫
S[0,n]C

1{(z, w) ∈ Ns((x1, u1), (x∗, u∗))}1{|x∗ − z| ⩽ |x1 − z|}d(x∗, u∗)

×
(∫

Sn

1{(z, w) ∈ Ns(ps)}dps

)m−2
d(z, w) d(x1, u1)

⩽
∫
Sn

∫
S

∫
S[0,n]C

1{(z, w) ∈ Ns((x1, u1), (x∗, u∗))}1{|x∗ − z| ⩽ |x1 − z|}d(x∗, u∗)

× cm−2
1 w−(m−2)γ′ d(z, w) d(x1, u1),

where we used again the fact that the inner integral can be bounded by Lemma D.8.1 (c)
after extending the integration domain from Sn to S. We distinguish two cases
depending on whether the position x1 of the point p1 is close to the boundary of the
window [0, n]. More precisely, with ε ∈ (0, 1/2), we consider the cases
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Case (A) (x1, u1) ∈ S[0,εn]∪[(1−ε)n,n] =: SA;

Case (B) (x1, u1) ∈ S(εn,(1−ε)n) =: SB.

Case (A) Case (A)Case (B)

0 εn (1 − ε)n n

R

In Case (A), we bound the error term E similarly to the case of the upper bound
above as follows:

E

m
⩽ cm−1

1

∫
SA

∫
S
w−(m−1)γ′

1{(z, w) ∈ Ns(ps,1)} d(z, w) dps,1

= 2βcm−1
1

1− (m− 1)γ′

∫
SA

u−γ
1 d(x1, u1) = 2cm1

1− (m− 1)γ′ εn ∈ O(n),

For Case (B), we have

E

m
⩽ cm−2

1

∫
SB

∫
S
w−(m−2)γ′

∫
S[0,n]C

1

{
(z, w) ∈ Ns((x1, u1), (x∗, u∗))

}
× 1

{
|x∗ − z| ⩽ |x1 − z|

}
d(x∗, u∗) d(z, w) d(x1, u1).

As |x1 − x∗| ⩾ εn, the triangle inequality gives

εn/2 ⩽ |x1 − x∗|/2 ⩽ (|x1 − z|+ |x∗ − z|)/2 ⩽ |x1 − z|.

Extending the integration domain of the integral with respect to p∗ from S[0,n]C to S,
we have

E

m
⩽ cm−1

1

∫
SB

∫
S
w−(m−1)γ′

1

{
(z, w) ∈ Ns((x1, u1))

}
× 1

{
εn/2 ⩽ |x1 − z|

}
d(z, w) d(x1, u1)

= cm−1
1

∫
SB

∫
S
w−(m−1)γ′

1

{
εn/2 ⩽ |z − x1| ⩽ βu−γ

1 w−γ′} d(z, w) d(x1, u1)

= cm−1
1

∫
SB

∫ 1

0
w−(m−1)γ′(2βu−γ

1 w−γ′ − εn
)

+ dw d(x1, u1).

The integrand is nonzero only if w ⩽ (2βu−γ
1 /(εn))1/γ′ ∧ 1 =: rn(u1). Then, neglecting

the term −εn, we have

E

m
⩽ 2βcm−1

1

∫
SB

u−γ
1

∫ rn(u1)

0
w−mγ′ dw d(x1, u1)

= 2βcm−1
1

1−mγ′

∫
SB

u−γ
1 rn(u1)1−mγ′ d(x1, u1) ⩽ c2n

∫ 1

0
u−γ

1 rn(u1)1−mγ′ du1,

(D.37)
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where c2 = (2β)m/((1 − γ)m−1(1 − mγ′)) is a positive constant if γ′ < 1/m, we
integrated with respect to x1, and substituted c1. Let us examine when rn(u1) ⩽ 1:(2β

εn
u−γ

1

)1/γ′

⩽ 1 ⇐⇒ u1 ⩾
(2β
εn

)1/γ
.

Then,

E

m
⩽ c2n

(∫ (
2β
εn

)1/γ

0
u−γ

1 du1 +
(2β
εn

)1/γ′−m ∫ 1(
2β
εn

)1/γ u
−(1/γ′−m+1)γ
1 du1

)
.

For the first integral,

∫ (
2β
εn

)1/γ

0
u−γ

1 du1 = 1
1− γ

(2β
εn

)1/γ−1
∈ o(n).

For the second integral,(2β
εn

)1/γ′−m ∫ 1(
2β
εn

)1/γ u
−(1/γ′−m+1)γ
1 du1

=


c3

((
2β
εn

)1/γ′−m
−

(
2β
εn

)1/γ−1)
if 1/γ′ − 1/γ ̸= m− 1

− 1
γ

(
2β
εn

)1/γ′−m
log

(
2β
εn

)
if 1/γ′ − 1/γ = m− 1,

where c3 = (1−(1/γ′−m+1)γ)−1 ∈ R, which is of order o(n). Then, lim supn↑∞E/n =
0 for all ε > 0.

Part (c). We begin this proof by following the same steps as in Part (b)
through (D.35)–(D.36), and we arrive at the following bound:∫(

Sun⩽
n

)m |Ns(ps,m)|dps,m ⩽
cmun

1−mγ′ n,

where cun = 2β(1−u1−γ
n )/(1−γ), which shows the upper bound since limn↑∞ u1−γ

n = 0.
For the lower bound, we follow the same arguments from Part (b) with Sun⩽

· , cun

in place of S · , c1, respectively. Then, for Case (A), we arrive at the bound

E

m
⩽

2cmun

1− (m− 1)γ′ εn ∈ O(n).

For Case (B), following the steps in Part (b) until (D.37), we have

E

m
⩽ c2(1− u1−γ

n )m−1n

∫ 1

un

u−γ
1 rn(u1)1−mγ′ du1,

where c2 := (2β)m/((1− γ)m−1(1−mγ′)), and we substituted cun . Deviating from the
proof of the previous part, we bound rn(u1) ⩽ (2βu−γ

1 /(εn))1/γ′ by neglecting the ∧1
part. Then,

E

m
⩽ c2(1− u1−γ

n )m−1n(εn)−(1/γ′−m)
∫ 1

un

u
−(1/γ′−m+1)γ
1 du1,
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where c3 := (2β)1/γ′−mc2 > 0. The integral can be bounded as follows:∫ 1

un

u
−(1/γ′−m+1)γ
1 du1 ⩽

{
|c4|u−((1/γ′−m+1)γ−1)+

n if 1/γ′ − 1/γ ̸= m− 1
log

(
u−1
n

)
if 1/γ′ − 1/γ = m− 1,

where c4 := (1− (1/γ′ −m+ 1)γ)−1. Then, if 1/γ′ − 1/γ ̸= m− 1, we have

lim sup
n↑∞

E

nm
⩽ c3|c4|ε−(1/γ′−m) lim sup

n↑∞

(
n−(1/γ′−m)u−((1/γ′−m+1)γ−1)+

n

)
.

If the exponent of un is 0, lim supn↑∞E/n = 0 for all ε > 0 since γ′ < 1/m. If the
exponent of un is negative, as un > c5n

−1 for some constant c5 > 0, we apply the
following bound:

lim sup
n↑∞

E

nm
⩽ c3|c4|c6ε

−(1/γ′−m) lim sup
n↑∞

(
n−(1/γ′−m+1)(1−γ)) = 0,

where c6 := c1−(1/γ′−m+1)γ
5 > 0. On the other hand, if 1/γ′ − 1/γ = m− 1, then

lim sup
n↑∞

E

nm
⩽ c3ε

−(1/γ′−m) lim sup
n↑∞

(
n−(1/γ′−m) log(u−1

n )
)

⩽ c3ε
−(1/γ′−m) lim

n↑∞

(
n−(1/γ′−m) log(c−1

5 n)
)

= 0,

where we used that un > c5n
−1 for large n. Thus, limε↓0 lim supn↑∞E/n = 0 in both

cases A and B, and the lower bound matches the upper bound in the limit as n→∞.

Part (d). We have that∫
S

(∫
Su−⩽

n

1{p′
s ∈ Ns(ps)} dps

)m
dp′

s =
∫
S

∫(
Su−⩽

n

)m

m∏
i=1

1{p′
s ∈ Ns(ps,i)} dps,m dp′

s

=
∫(

Su−⩽
n

)m

∫
S
1{p′

s ∈ Ns(ps,m)}dp′
s dps,m =

∫(
Su−⩽

n

)m |Ns(ps,m)|dps,m,

where we used Fubini’s theorem to switch the order of integration, and pm :=
(p1, . . . , pm). This expression can be bounded using Lemma D.8.2 (c) as follows:∫(

Su−⩽
n

)m |Ns(ps,m)| dps,m ⩽
( 2β

1− γ

)m n

1−mγ′ ,

where we used that 1− u1−γ
− < 1.

Part (e). We write the common neighborhood as an integral, and then use Fubini’s
theorem. Then, using Lemma D.8.1 (a) to calculate |Ns(ps,1)| and |Ns(ps,2)|, we have
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that

I :=
∫∫

S2
n

|Ns((x1, u1))|m1 |Ns((x1, u1), (x2, u2))|

× |Ns((x2, u2))|m2 |x1 − x2|m3 d(x1, u1) d(x2, u2)

= c1

∫∫
S2

n

u−m1γ
1 u−m2γ

2 |Ns((x1, u1), (x2, u2))||x1 − x2|m3 d(x1, u1) d(x2, u2)

= c1

∫
Sn

u−m1γ
1

∫
S
1{p′

s ∈ Ns((x1, u1))}

×
∫
Sn

1{p′
s ∈ Ns((x2, u2))}u−m2γ

2 |x1 − x2|m3 d(x2, u2) dp′
s d(x1, u1),

where c1 := (2β/(1 − γ′))m1+m2 , and we require that γ < (m1 ∨ m2)−1 to apply
Lemma D.8.1 (a). Focusing on the inner integral, we use the triangle inequality
|x1 − x2|m3 ⩽ (|x1 − z|+ |x2 − z|)m3 :

Iinner :=
∫
Sn

1{p′
s ∈ Ns((x2, u2))}u−m2γ

2 |x1 − x2|m3 d(x2, u2)

⩽ 2m3

∫
S
1{|z − x2| ⩽ βu−γ

2 w−γ′}u−m2γ
2 (|z − x2|m3 + |z − x1|m3) d(x2, u2)

= 21+m3

∫ 1

0
u−m2γ

2

∫ βu−γ
2 w−γ′

0
(x′

2)m3 + |z − x1|m3 dx2 du2

= c2w
−(1+m3)γ′

∫ 1

0
u

−(1+m2+m3)γ
2 du2

+ 21+m3βw−γ′ |z − x1|m3

∫ 1

0
u

−(1+m2)γ
2 du2

= c3w
−(1+m3)γ′(1− u1−(1+m2+m3)γ

−
)

+ c4w
−γ′ |z − x1|m3 ,

where c2 := (2β)1+m3/(1 + m3), c3 := c2/(1 − (1 + m2 + m3)γ), c4 := 21+m3β/(1 −
(1 + m2)γ), we extended the integration domain from Sn to S, and substituted for
x′

2 := |z − x2|. Furthermore, if u− = 0, then we require γ < (1 +m2 +m3)−1 for the
finiteness of the integral with respect to u2. Then,

I ⩽ c1

∫
Sn

u−m1γ
1

∫
S
1{(z, w) ∈ Ns((x1, u1))}

×
(
c3w

−(1+m3)γ′ + c4w
−γ′ |z − x1|m3

)
d(z, w) d(x1, u1)

= 2c1

∫
Sn

u−m1γ
1

∫ 1

0

∫ βu−γ
1 w−γ′

0

(
c3w

−(1+m3)γ′ + c4w
−γ′(z′)m3

)
dz′ dw d(x1, u1)

=
∫ 1

0
w−(2+m3)γ′ dw

(
c5

∫
Sn

u
−(1+m1)γ
1 d(x1, u1)

+ c6

∫
Sn

u
−(1+m1+m3)γ
1 d(x1, u1)

)
= c(c′ + c′′)n,

where we substituted for z′ := |z − x1| in the first step, and c5 := 2βc1c3, c6 :=
(2β1+m3c1c4)/(1 +m3), c7 := c5/((1− (1 +m1)γ)(1− (2 +m3)γ′)), c8 := c6/((1− (1 +
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m1 + m3)γ)(1 − (2 + m3)γ′)). Moreover, the finiteness of the integral with respect
to w requires γ′ < 1/(2 +m3), and if u− = 0, then the integral with respect to u1 is
finite if γ < 1/(1 +m1 +m3). All in all, we require γ < 1/(1 + (m1 ∨m2) +m3) and
γ′ < 1/(2 +m3).

Part (f). In this part, we follow the same strategy as in the previous part, but
we consider the case where we have a minimum mark u− > 0. Writing the common
neighborhood as an integral, the application of Fubini’s theorem and Lemma D.8.1 (a)
yields

I :=
∫∫(

Su−⩽
n

)2 |Ns((x1, u1))|m1 |Ns((x1, u1), (x2, u2))||Ns((x2, u2))|m2

× |x1 − x2|m3 d(x1, u1) d(x2, u2)

= c1

∫
Su−⩽

n

u−m1γ
1

∫
S
1{p′

s ∈ Ns((x1, u1))}

×
∫
Su−⩽

n

1{p′
s ∈ Ns((x2, u2))}u−m2γ

2 |x1 − x2|m3 d(x2, u2) dp′
s d(x1, u1),

where c1 := (2β/(1− γ′))m1+m2 . For the inner integral, the triangle inequality gives:

Iinner :=
∫
Su−⩽

n

1{p′
s ∈ Ns((x2, u2))}u−m2γ

2 |x1 − x2|m3 d(x2, u2)

= c2w
−(1+m3)γ′

∫ 1

u−
u

−(1+m2+m3)γ
2 du2

+ 21+m3βw−γ′ |z − x1|m3

∫ 1

u−
u

−(1+m2)γ
2 du2

⩽ |c3|w−(1+m3)γ′
u

−((1+m2+m3)γ−1)+
− + |c4|w−γ′ |z − x1|m3u

−((1+m2)γ−1)+
− ,

where we followed the same steps as in the previous part, and set c2 := (2β)1+m3/(1 +
m3), c3 := c2/(1− (1 +m2 +m3)γ) and c4 := (2βc3)/(1− (1 +m2)γ). Note that we
do not require any bounds on γ for the finiteness of the integrals. Then,

I ⩽ c1

∫
Su−⩽

n

u−m1γ
1

∫
S
1{(z, w) ∈ Ns((x1, u1))}

(
|c3|w−(1+m3)γ′

u
−((1+m2+m3)γ−1)+
−

+ |c4|w−γ′ |z − x1|m3u
−((1+m2)γ−1)+
−

)
d(z, w) d(x1, u1)

= 2c1

∫
Su−⩽

n

u−m1γ
1

∫ 1

0

∫ βu−γ
1 w−γ′

0

(
|c3|w−(1+m3)γ′

u
−((1+m2+m3)γ−1)+
−

+ |c4|w−γ′(z′)m3u
−((1+m2)γ−1)+
−

)
dz′ dw d(x1, u1)

=
∫ 1

0
w−(2+m3)γ′ dw

(
c5u

−((1+m2+m3)γ−1)+
−

∫
Su−⩽

n

u
−(1+m1)γ
1 d(x1, u1)

+ c6u
−((1+m2)γ−1)+
−

∫
Su−⩽

n

u
−(1+m1+m3)γ
1 d(x1, u1)

)
⩽ c

(
|c′|u−((1+m2+m3)γ−1)+−((1+m1)γ−1)+

− + |c′′|u−((1+m2)γ−1)+−((1+m1+m3)γ−1)+
−

)
n,
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where we substituted for z′ := |z − x1| in the first step, and c5 := 2βc1|c3|, c6 :=
(2β1+m3c1|c4|)/(1 +m3), c7 := c5/((1− (1 +m1)γ)(1− (2 +m3)γ′)), c8 := c6/((1− (1 +
m1 +m3)γ)(1− (2 +m3)γ′)), and the constants c, c′, c′′ are specified in the statement
of Lemma D.8.2 (e). We also used that γ /∈ {(1 +m2 +m3)−1, (1 +m1 +m3)−1} since
γ > 1/2.

Proof of Lemma D.8.3. Here, we calculate the size of the temporal neighborhoods of
points.

Part (a). The size of the temporal neighborhood of a point pt = (b, ℓ) ∈ T is given
by

|Nt(pt; t)| =
∫
R
1{b ⩽ r ⩽ t ⩽ b+ ℓ} dr = 1{b ⩽ t ⩽ b+ ℓ}(t− b).

Part (b). The size of the neighborhood of a point r ∈ R is given by∫
T
1{r ∈ Nt(pt; t)}µt(dpt) =

∫
T
1{b ⩽ r ⩽ t ⩽ b+ ℓ}µt(d(b, ℓ))

= 1{r ⩽ t}
∫ r

−∞

∫ ∞

t−b
PL(dℓ) db = 1{r ⩽ t}

∫ r

−∞
e−(t−b) db = 1{r ⩽ t}e−(t−r),

as required.

Proof of Lemma D.8.4. In this proof, we calculate the integrals one by one using
Fubini’s theorem.

Part (a). The integral is given by∫
T
|Nt(pt)|α µt(dpt) =

∫
T
(t− b)α 1{b ⩽ t ⩽ b+ ℓ}µt(d(b, ℓ))

=
∫ t

−∞
(t− b)αet−b db = Γ(α+ 1).

Part (b). We have that∫
⊗m

i=1Ti

∣∣∣ m⋂
i=1

Nt(ps,i; ti)
∣∣∣ dpt,m =

∫
R

( m∏
i=1

∫
Ti

1{r ∈ Nt(pt; ti)}µt(dpt)
)

dr.

If Ti = T and ti = t for all indices i ∈ {1, . . . ,m}, then∫
⊗m

i=1Ti

|Nt(pt,m; t)| dpt,m =
∫
R

(∫
T
1{r ∈ Nt(pt; t)}µt(dpt)

)m
dr

=
∫
R

(∫
T
1{b ⩽ r ⩽ t ⩽ b+ ℓ}µt(d(b, ℓ))

)m
dr =

∫ t

−∞
e−m(t−r) dr = 1

m
.
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Part (c). We bound the integral using Lemma D.8.3 (a) as follows:∫
T

∫
T
|Nt(ps,1; t1)|α1 |Nt(ps,1; t1) ∩Nt(ps,2; t2)||Nt(ps,2; t2)|α2 µt(dps,2)µt(dps,1)

⩽
∫
T
|Nt(ps,1; t1)|α1 µt(dps,1)

∫
T
|Nt(ps,2; t2)|α2+1 µt(dps,2) ⩽ Γ(α1 + 1)Γ(α2 + 2),

where we used Part (a) of this lemma in the second step.

Part (d). We use Lemma D.8.3 (b) to calculate the integral:∫
R

(∫
T
1{p′ ∈ N(p; t)}µ(dp)

)α
dp′ =

∫ t

−∞
e−α(t−r) dr = 1

α
,

as required.

Proof of Lemma D.8.5. Part (a). Part (a) of the lemma is trivial.
Part (b). For the plus case, we have∣∣δt1,t2(N+

t (pt))
∣∣ = |N+

t (pt; t2)| − |N+
t (pt; t1)|

=
∫
R
1{b ⩽ r ⩽ (b+ ℓ) ∧ t2} − 1{b ⩽ r ⩽ (b+ ℓ) ∧ t1}dr

=
∫
R
1{b ∨ t1 ⩽ r ⩽ (b+ ℓ) ∧ t2} dr

=
(
((b+ ℓ) ∧ t)− (b ∨ t1)

)
1{b ⩽ t2}1{t1 ⩽ b+ ℓ}.

In the minus case,∣∣δt1,t2(N−
t (pt))

∣∣ = |N−
t (pt; t2)| − |N−

t (pt; t1)|

=
∫
R
1{b ⩽ r ⩽ b+ ℓ ⩽ t2} − 1{b ⩽ r ⩽ b+ ℓ ⩽ t1} dr

=
∫
R
1{b ⩽ r ⩽ t1 ⩽ b+ ℓ ⩽ t2}dr

= (t1 − b)1{b ⩽ t1 ⩽ b+ ℓ ⩽ t2}.

Part (c). For the plus case, we have∫
T0⩽

1{r ∈ N+
t (pt; t)}µt(dpt) =

∫
T0⩽

1{b ⩽ r ⩽ (b+ ℓ) ∧ t}µt(d(b, ℓ))

= 1{r ⩽ 0}
∫ r

−∞

∫ ∞

−b
PL(dℓ) db+ 1{0 ⩽ r ⩽ t}

∫ r

−∞

∫ ∞

r−b
PL(dℓ) db

= 1{r ⩽ 0}er + 1{0 ⩽ r ⩽ t}.

For the minus case,∫
T0⩽

1{r ∈ N−
t (pt; t)}µt(dpt) =

∫
T0⩽

1{b ⩽ r ⩽ (b+ ℓ) ∧ t}µt(d(b, ℓ))

= 1{r ⩽ 0}
∫ r

−∞

∫ t−b

−b
PL(dℓ) db+ 1{0 ⩽ r ⩽ t}

∫ r

−∞

∫ t−b

r−b
PL(dℓ) db

= 1{r ⩽ 0}
(
er − e−(t−r)) + 1{0 ⩽ r ⩽ t}

(
1− e−(t−r)),

as required.
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Proof of Lemma D.8.6. Here we show the integrals of the plus-minus temporal neigh-
borhoods.

Part (a). For the plus case, we have∫
T0⩽
|N+

t (pt; t)|m µt(dpt) =
∫
T0⩽
⩽t

(((b+ ℓ) ∧ t)− b)m µt(d(b, ℓ))

=
∫ 0

−∞

∫ t−b

−b
ℓm PL(dℓ) db+

∫ t

0

∫ t−b

0
ℓm PL(dℓ) db

+
∫ t

−∞

∫ ∞

t−b
(t− b)m PL(dℓ) db.

Note that
d
dℓ

(
−e−ℓm!

m∑
i=0

ℓi

i!

)
= ℓme−ℓ.

Then,∫
T0⩽
|N+

t (pt; t)|m µt(dpt) =
∫ 0

−∞
m!

(
eb

m∑
i=0

(−b)i

i! − e−(t−b)
m∑
i=0

(t− b)i

i!

)
db

+
∫ t

0
m!

(
1− e−(t−b)

m∑
i=0

(t− b)i

i!

)
db+

∫ t

−∞
(t− b)me−(t−b) db

=
m∑
i=0

m!
i!

(∫ 0

−∞
(−b)ieb db−

∫ t

−∞
(t− b)ie−(t−b) db

)
+m!(t+ 1) = m!(t+ 1),

where we applied the dominated convergence theorem with exp(−(t− b)) and exp(b)
as the dominating functions to interchange the integral and the summation, and
recognized the Gamma functions. For the minus case, we use the same argument to
obtain∫

T0⩽
|N−

t (pt; t)|m µt(dpt) =
∫
T[0,t]

ℓm µt(d(b, ℓ))

=
∫ 0

−∞

∫ t−b

−b
ℓm PL(dℓ) db+

∫ t

0

∫ t−b

0
ℓm PL(dℓ) db = m!t.

Part (b). For the plus case, we have∫
T0⩽
|N+

t (pt; t)|α µt(dpt) =
∫
T0⩽
⩽t

(((b+ ℓ) ∧ t)− b)α µt(d(b, ℓ))

=
∫ 0

−∞

∫ t−b

−b
ℓα PL(dℓ) db+

∫ t

0

∫ t−b

0
ℓα PL(dℓ) db+

∫ t

−∞

∫ ∞

t−b
(t− b)α PL(dℓ) db

⩽ 2c
∫ 0

−∞
eb − e−(t−b) db+ 2c

∫ t

0
1− e−(t−b) db+

∫ t

−∞
(t− b)αe−(t−b) db

= 2ct+ Γ(α+ 1),
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where we used that ℓαe−ℓ ⩽ ce−ℓ/2 with c := (2α)αe−α, and substituted for t − b in
the last term. In the minus case, we use the same argument as above to obtain∫

T0⩽
|N−

t (pt; t)|α µt(dpt) =
∫
T[0,t]

ℓα µt(d(b, ℓ))

=
∫ 0

−∞

∫ t−b

−b
ℓα PL(dℓ) db+

∫ t

0

∫ t−b

0
ℓα PL(dℓ) db ⩽ 2ct.

Part (c). First, using Lemma D.8.5 (b), we calculate the integral in the plus case:∫
Tt1⩽
⩽t2

∣∣δt1,t2(N+
t (pt))

∣∣m µt(dpt) =
∫
Tt1⩽
⩽t2

(
((b+ ℓ) ∧ t2)− (b ∨ t1)

)m
µt(d(b, ℓ))

=
∫ t1

−∞

∫ t2−b

t1−b
(b+ ℓ− t1)m PL(dℓ) db+

∫ t1

−∞

∫ ∞

t2−b
(t2 − t1)m PL(dℓ) db

+
∫ t2

t1

∫ t2−b

0
ℓm PL(dℓ) db+

∫ t2

t1

∫ ∞

t2−b
(t2 − b)m PL(dℓ) db.

We treat each term individually. For the first integral, we substitute a := b+ ℓ− t1:∫ t1

−∞

∫ t2−b

t1−b
(b+ ℓ− t1)m PL(dℓ) db =

∫ t1

−∞
e−(t1−b)

∫ t2−t1

0
ame−a da db

⩽ c1(t2 − t1) ∈ O(t2 − t1),

where we used that ame−a ⩽ c1 is bounded in the second step. For the second integral,
we have ∫ t1

−∞

∫ ∞

t2−b
(t2 − t1)m PL(dℓ) db = (t2 − t1)me−(t2−t1) ∈ O(t2 − t1),

where, in the last step, we used that t2 − t1 ⩽ 1. For the third term, we have∫ t2

t1

∫ t2−b

0
ℓm PL(dℓ) db ⩽ Γ(m+ 1)(t2 − t1) ∈ O(t2 − t1),

where we extended the integration domain from [0, t2 − b] to [0,∞). For the last
integral, ∫ t2

t1

∫ ∞

t2−b
(t2 − b)m PL(dℓ) db =

∫ t2

t1
(t2 − b)me−(t2−b) db

=
∫ t2−t1

0
ame−a da ∈ O(t2 − t1),

where we used the substitution a := t2 − b in the second step, and used that the
integrand is bounded in the last step. Then, each of the terms is in O(t2 − t1), which
completes the proof for the plus case.
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For the minus case,∫
T0⩽

∣∣δt1,t2(N−
t (pt))

∣∣m µt(dpt) =
∫
T[t1,t2]
⩽t1

(t1 − b)m µt(d(b, ℓ))

=
∫ t1

−∞
(t1 − b)m

(
e−(t1−b) − e−(t2−b)) db

=
(
1− e−(t2−t1)) ∫ ∞

0
ame−a da

= Γ(m+ 1)
(
1− e−(t2−t1)) ∈ O(t2 − t1),

where we substituted a := t1 − b in the third step. Thus,∫
T0⩽

∣∣δt1,t2(N±
t (pt))

∣∣m µt(dpt) ⩽ (t2 − t1)m.

Part (d). For the plus case,∫
R

(∫
T0⩽

1{r ∈ δt1,t2(N+
t (pt))}µt(dpt)

)m
dr

=
∫
R

(∫
Tt1⩽
⩽t2

1{b ∨ t1 ⩽ r ⩽ (b+ ℓ) ∧ t2}µt(d(b, ℓ))
)m

dr

=
∫
R
1{t1 ⩽ r ⩽ t2}

(∫
T
1{b ⩽ r ⩽ b+ ℓ}µt(d(b, ℓ))

)m
dr ∈ O(t2 − t1),

since the inner integral is equal to 1 since∫
T
1{b ⩽ r ⩽ b+ ℓ}µt(d(b, ℓ)) =

∫ t

−∞

∫ ∞

t−b
PL(dℓ) db =

∫ t

−∞
e−(t−b) db = 1.

For the minus case, we have∫
R

(∫
T0⩽

1{r ∈ δt1,t2(N−
t (pt))}µt(dpt)

)α
dr =

∫ t1

−∞

(∫
T[t1,t2]
⩽r

µt(dpt)
)α

dr

=
∫ t1

−∞

(
e−(t1−r) − e−(t2−r))α dr =

(
e−t1 − e−t2)α ∫ t1

−∞
eαr dr

= 1
α

(
1− e−(t2−t1))α ∈ O(t2 − t1).

Part (e). Note that by independence of the points pi and their neighborhoods
N±

t (ps,i; t), Fubini’s theorem gives∫∫(
T0⩽

)m |N±
t (pt,m; t)|dpt,m =

∫
R

(∫
T0⩽

1{r ∈ N±
t (pt; t)}µt(dpt)

)m
dr.
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For the plus case, using Lemma D.8.5 (c), we have:∫
R

(∫
T0⩽

1{r ∈ N+
t (pt; t)}µt(dpt)

)m
dr

=
∫
R

(∫
T0⩽

1{b ⩽ r ⩽ (b+ ℓ) ∧ t}µt(d(b, ℓ))
)m

dr

=
∫
R

(
1{r ⩽ 0}

∫ r

−∞

∫ ∞

−b
PL(dℓ) db+ 1{0 ⩽ r ⩽ t}

∫ r

−∞

∫ ∞

r−b
PL(dℓ) db

)m
dr

=
∫ 0

−∞
emr dr +

∫ t

0
dr = 1

m
+ t.

For the minus case, we have∫
R

(∫
T0⩽

1{r ∈ N−
t (pt; t)}µt(dpt)

)m
dr ⩽

∫
R

(∫
T0⩽

1{r ∈ N+
t (pt; t)}µt(dpt)

)m
dr.

Part (f). For the plus case, we have∫∫(
T0⩽
⩽1

)2 |N±
t (ps,1; t1)|α1 |N±

t (ps,1; t1) ∩N±
t (ps,2; t2)||N±

t (ps,2; t2)|α2 µt(dps,1)µt(dps,2)

⩽
∫
T0⩽
⩽1

∫
T0⩽
|N±

t (ps,2; t2)|α2+1 µt(dps,1)µt(dps,2) ⩽ c

∫
T0⩽
⩽1

µt(dpt)

= c

∫ 0

−∞

∫ ∞

−b
PL(dℓ) db+ c

∫ 1

0

∫ ∞

0
PL(dℓ) db = 2c <∞

with some constant c > 0, and we used Lemma D.8.6 (b) in the second step for the
integral with respect to ps,2.

D.A Proofs of Lemmas D.10.1 and D.10.2
The following two lemmas were necessary to apply Proposition D.5.4 to show the
finite-dimensional convergence of the plus and minus parts. Here, we follow the
same approach as in the proof of Proposition D.5.4 and use the time interval-based
decomposition of the edge counts to calculate the limiting covariance functions of S±

n .

Proof of Lemma D.10.1. The proof follows the same steps as the proof of Proposi-
tion D.2.2. Note that

Cov(S±
n (s), S±

n (t)) = 1
n Cov(S±

n (s), S±
n (t)).

For the covariance functions of S±
n (t), we assume that 0 ⩽ s ⩽ t ⩽ 1, and decompose

them based on

S+
n (s) = SA+

n (s) S+
n (t) = SA+

n (s) + SB+
n (s, t) + SC+

n (s, t)
S−
n (s) = SA−

n (s) S−
n (t) = SA−

n (s) + SB−
n (s, t) + SC−

n (s, t),

233



Paper D. Functional Limit Theorems in Random Connection Hypergraphs

where
SA+
n (s) :=

∑
P∈P∩(Sn×T0⩽)

∑
P ′∈P ′

1{P ′ ∈ N+(P ; s)}

SB+
n (s, t) :=

∑
P∈P∩(Sn×T0⩽

⩽s)

∑
P ′∈P ′

1{P ′ ∈ N+(P ; t)}1{s ⩽ R}

SC+
n (s, t) :=

∑
P∈P∩(Sn×T[s,t])

∑
P ′∈P ′

1{P ′ ∈ N+(P ; t)}

for the plus case and

SA−
n (s) :=

∑
P∈P∩(Sn×T[0,s])

∑
P ′∈P ′

1{P ′ ∈ N−(P ; s)}

SB−
n (s, t) :=

∑
P∈P∩(Sn×T[s,t])

∑
P ′∈P ′

1{P ′ ∈ N−(P ; t)}1{R ⩽ s}

SC−
n (s, t) :=

∑
P∈P∩(Sn×T[s,t])

∑
P ′∈P ′

1{P ′ ∈ N−(P ; t)}1{s ⩽ R}

(D.38)

for the minus case. These decompositions of the edge counts are visualized in Figure D.7.
With these notations, the covariance functions are given as follows:

Cov(S+
n (s), S+

n (t)) = Var(SA+
n (s)) + Cov(SA+

n (s), SB+
n (s, t))

Cov(S−
n (s), S−

n (t)) = Var(SA−
n (s)) + Cov(SA−

n (s), SB−
n (s, t)),

(D.39)

Rs t

A+
b

r

B+
b

r

C+
b

r

Rs t

A−
b+ ℓ

r

B−
b+ ℓ

r

C−
b+ ℓ

r

Figure D.7: Decomposition of the edge count functions S±
n (s) and S±

n (t). We
require that b ⩽ r ⩽ b+ ℓ.
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as Cov(SA+
n (s), SC+

n (s, t)) = Cov(SA−
n (s), SC−

n (s, t)) = 0 due to the independence
property of the Poisson processes P and P ′.

Covariance function of S+
n (t). We begin with the plus case. The variance term

in (D.39) is

Var(SA+
n (s)) =E

[ ∑
P∈P∩Sn×T0⩽

deg+(P ; s)2
]

=
∫
Sn×T0⩽

E
[
deg+(p; s)2]

µ(dp)

+
∫∫(

Sn×T0⩽
)2 Cov

(
deg+(p1; s),deg+(p2; s)

)
µ(dp1)µ(dp2).

Using the same calculations as in the proof of Lemma D.3.1, we see that E[deg+(p; s)2] =
|N+(p; s)|+ |N+(p; s)|2, which leads to

lim
n↑∞

1
n

∫
Sn×T0⩽

E
[
deg+(p; s)2]

µ(dp)

=
2∑

k=1
lim
n↑∞

1
n

∫
Sn

|Ns(ps)|k dps

∫
T0⩽
|N+

t (pt; s)|k µt(dpt) =
2∑

k=1

( 2β
1− γ′

)k k!(s+ 1)
1− kγ ,

where in the last step we used Lemma D.8.2 (a) for the spatial part and Lemma D.8.6 (a)
for the temporal part. Following again the same calculations as in Lemma D.3.1, we
get Cov(deg+(p1; s),deg+(p2; s)) = |N+(p1, p2; s)|. Using this result, we factorize the
second integral:

lim
n↑∞

1
n

∫∫(
Sn×T0⩽

)2 |N+(p1, p2; s)|µ(dp1)µ(dp2)

= lim
n↑∞

1
n

∫∫
S2

n

|Ns(ps,1, ps,2)|dps,1 dps,2

×
∫∫(

T0⩽
)2 |N+

t (ps,1, ps,2; s)|µt(dps,1)µt(dps,2) <∞,

where we used Lemma D.8.2 (b) with m = 2 for the spatial part and Lemma D.8.6 (e)
for the temporal part. Similarly to the proof of Proposition D.2.2, the covariance
term Cov(SA+

n (s), SB+
n (s, t)) is determined by the common P-points of SA+

n (s) and
SB+
n (s, t):

lim
n↑∞

1
n

Cov(SA+
n (s), SB+

n (s, t))

= lim
n↑∞

1
n

∫
Sn×T0⩽

⩽s

|N+(p; s)|
∫
S×[s,t]

1{p′ ∈ N+(p; t)} dp′ µ(dp) = Is × It,

where
Is := lim

n↑∞
1
n

∫
Sn

|Ns(ps)|2 dps

It :=
∫
T0⩽
⩽s

|N+
t (pt; s)|

∫
[s,t]

1{r ∈ N+
t (pt; t)}dr µt(dpt),
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and we used that the P ′-points connecting to the point p cannot be identical due to
the disjoint sets to which the P ′-points belong. By Lemma D.8.2 (a), we see that
Is <∞. Using Lemma D.8.6 (b), we see that It is bounded:

It ⩽ (t− s)
∫
T0⩽
|N+

t (pt; s)|µt(dpt) <∞.

Thus, for some finite constant c+ > 0, limn↑∞ Cov(S+
n (s), S+

n (t)) = c+.

Covariance function of S−
n (t). Let us recall the notations in (D.38). The variance

term in (D.39) is

Var(SA−
n (s)) = E

[ ∑
P∈P∩Sn×T[0,s]

deg−(P ; s)2
]

=
∫
Sn×T[0,s]

E
[
deg−(p; s)2]

µ(dp)

+
∫∫(

Sn×T[0,s]
)2 Cov

(
deg−(p1; s), deg−(p2; s)

)
µ(dp1)µ(dp2).

Using the same calculations as in Lemma D.3.1, we have E
[
deg−(p; s)2]

= |N−(p; s)|+
|N−(p; s)|2, thus

lim
n↑∞

1
n

∫
Sn×T[0,s]

E
[
deg−(p; s)2]

µ(dp)

=
2∑

k=1
lim
n↑∞

1
n

∫
Sn

|Ns(ps)|k dps

∫
T0⩽
|N−

t (pt; s)|k µt(dpt) <∞,

where in the last step we used Lemma D.8.2 (a) for the spatial part and Lemma D.8.6 (b)
for the temporal part, and we require that γ < 1/2. As Cov(deg−(p1; s), deg−(p2; s)) =
|N−(p1, p2; s)|, factorizing the second integral, and the application of Lemma D.8.2 (b)
with m = 2 for the spatial part and Lemma D.8.6 (e) for the temporal part leads to

lim
n↑∞

1
n

∫∫(
Sn×T[0,s]

)2 |N−(p1, p2; s)|µ(dp1)µ(dp2) <∞,

where we require again that γ′ < 1/2. The covariance term Cov(SA−
n (s), SB−

n (s, t)) is
determined by the common P ′-points of SA−

n (s) and SB−
n (s, t):

lim
n↑∞

1
n

Cov(SA−
n (s), SB−

n (s, t)) = lim
n↑∞

1
n

∫
Sn×T[0,s]

∫
Sn×T[s,t]

∫
S×R

1{p′ ∈ N−(p1; s)}

× 1{p′ ∈ N−(p2; s)} dp′ µ(dp1)µ(dp2) = Is × It

Is := lim
n↑∞

1
n

∫
S2

n

|Ns(ps,1, ps,2)| dps,1 dps,2

It :=
∫
T[0,s]

∫
T[s,t]
|N−

t (ps,1, ps,2; s)|µt(dps,2)µt(dps,1),

where we used that the P-points connecting to the point p′ cannot be identical due
to the disjoint sets the P-points belong to. By Lemma D.8.2 (b), Is <∞ if γ′ < 1/2.
The temporal integral It is bounded by Lemma D.8.6 (e):

It ⩽
∫∫(

T0⩽
)2 |N−

t (ps,1, ps,2; s)|µt(dps,1)µt(dps,2) <∞.
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Thus, for some constant c− > 0, the limiting covariance function of S−
n (t) is given by

limn↑∞ Cov(S−
n (s), S−

n (t)) = c−, as desired.

Proof of Lemma D.10.2. The proof follows the same steps as the proof of Lemma D.5.6,
and we calculate only the parts that differ from the previous calculations. As the
spatial parts of the integrals are identical, we only need to show that the temporal
integrals are finite.

Error term E1(n). In case of the error term E1(n), if p̃1, p̃2 ∈ Sn × T0⩽ and
p̃3 ∈ S× R, we have∫

T0⩽
|N±

t (pt; t)|m1 µt(dpt)
∫
T0⩽
|N±

t (pt; t)|m2+1 µt(dpt) <∞

due to Lemma D.8.6 (b). If p̃1, p̃2 ∈ S× R and p̃3 ∈ Sn × T0⩽, then the argument in
the proof of Lemma D.5.6 applies, if we show first that∫

T0⩽
|N±

t (pt; t)|2 µt(dpt) <∞, (D.40)

which holds due to Lemma D.8.6 (b), and second that
∫
T0⩽

(∫
R
1{r ∈ N±

t (ps,1; s)}
∫
T0⩽

1{r ∈ N±
t (ps,2; t)}µt(dps,2) dr

)2
µt(dps,1) <∞.

As the inner integral is a finite constant due to Lemma D.8.6 (b), the expression
reduces to (D.40), which is finite.

Error term E2(n). Next, we turn our attention to the error term E2(n). Following
along the same lines as in the proof of Lemma D.5.6, we need to show that∫∫

(T0⩽)2
|N±

t (ps,1, ps,2; s)|µt(dps,1)µt(dps,2) <∞,

which follows from Lemma D.8.6 (e), and that (D.40) holds.

Error term E3(n). For the error term E3(n),∫
T0⩽
|N±

t (pt; t)|m µt(dpt) <∞∫
R

(∫
T0⩽

1{r ∈ N+
t (pt; t)}µt(dpt)

)m
dr <∞

by Lemmas D.8.6 (b) and D.8.6 (e), respectively.
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D.B Proofs of Lemmas D.11.1, D.11.2, and D.11.3 used
in Section D.11

The following proofs verify the lemmas used to show that the finite-dimensional
distributions of the high-mark edge count S⩾

n converge to 0. The ideas are similar to
the proof of Theorem D.2.4.

Proof of Lemma D.11.1. After the application of Mecke’s formula, similarly to (D.9),
we have

Var(S⩾,±
n (t)) =

∫
Sun⩽

n ×T0⩽
E[deg±(p; t)2]µ(dp)

+
∫∫

(Sun⩽
n ×T0⩽)2

Cov(deg±(p1; t),deg±(p2; t))µ(dp1)µ(dp2).

Using (D.10), we have for the first term∫
Sun⩽

n ×T0⩽
E[deg±(p; t)2]µ(dp) =

∫
Sun⩽

n ×T0⩽
|N±(p; t)|+ |N±(p; t)|2 µ(dp)

= n
(
c1(t)

(
1− u1−γ

n

)
+ c2(t)

(
u−(2γ−1)
n − 1

))
,

where γ > 1/2, c1(t), c2(t) > 0 are t-dependent constants, and we used Lem-
mas D.8.2 (a) and D.8.6 (a) for the spatial and temporal parts respectively. For
a large enough n, the terms above can be bounded by c2(t)nu2γ−1

n . As un = n−2/3 the
first term is in O(n1+2/3(2γ−1)) ⊂ o(n2γ). Next, we calculate the covariance term by
following again the steps in the proof of Lemma D.3.1:∫∫

(Sun⩽
n ×T0⩽)2

Cov(deg±(p1; t), deg±(p2; t))µ(dp1)µ(dp2)

=
∫∫

(Sun⩽
n ×T0⩽)2

|N±(p1, p2; t)|µ(dp1)µ(dp2).

Requiring γ′ < 1/2, we bound the spatial part using Lemma D.8.2 (c) and the
temporal part by t+ 1/2 using Lemma D.8.6 (e). Thus, the covariance term is of order
O(n) ⊆ o(n2γ).

Proof of Lemma D.11.2. As in (D.13), we bound the variance term using the Poincaré
inequality [66, Theorem 18.7], and following (D.14), we recognize again that
Dp(∆⩾,±

n (s, t)) is Poisson distributed with mean E[Dp(∆⩾,±
n (s, t))] = |N±(p; t) \

N±(p; s)|. We apply the same steps as in (D.15), and then by the application of
Lemmas D.8.2 (a) and D.8.6 (c), we obtain∫

Sun⩽
n ×T0⩽

∣∣N±(p; t) \N±(p; s)
∣∣ +

∣∣N±(p; t) \N±(p; s)
∣∣2 µ(dp)

⩽ n(t− s)
(
c1(1− u1−γ

n ) + c2(u−(2γ−1)
n − 1)

)
,

where c1, c2 > 0 are positive constants, and as un > 0, the bound is valid for γ ∈
(1/2, 1).
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To show that the above integral is in O(n2γ(t− s)(1+η)/2), we check the order of
each term:

n(t− s) ∈ O(n2γ(t− s)(1+η)/2) ⇐⇒ (t− s)(1−η)/2 ∈ O(n2γ−1)
n(t− s)u1−γ

n ∈ O(n2γ(t− s)(1+η)/2) ⇐⇒ (t− s)(1−η)/2 ∈ O(n(4γ−1)/3)
n(t− s)u−(2γ−1)

n ∈ O(n2γ(t− s)(1+η)/2) ⇐⇒ (t− s)(1−η)/2 ∈ O(n(2γ−1)/3)

as η = 1/3, un = n−2/3. Similarly to (D.16), the cost operator Dp′(∆⩾,±
n (s, t)) is also

Poisson distributed with mean

E[Dp′(∆⩾,±
n (s, t))] =

∫
Sun⩽

n ×T0⩽
1{p′ ∈ N±(p; t) \N±(p; s)}µ(dp).

Next, we follow along (D.17) and Lemmas D.8.2 (d) and D.8.6 (d) yield∫
S×R

E
[
Dp′(∆⩾,±

n (s, t))
]

+ E
[
Dp′(∆⩾,±

n (s, t))
]2 dp′ ∈ O(n(t− s)),

where we used Lemmas D.8.2 (d) and D.8.6 (e) to bound the spatial and temporal
parts, respectively.

To show Condition (2) of Theorem D.6.2 for the high-mark edge count S⩾
n , we

need to bound the cumulant term κ4(∆⩾,±
n (s, t)), which is done in the following proof.

Proof of Lemma D.11.3. The proof is similar to the proof of Lemma D.10.4 for the
thin-tailed case. In this proof, we follow the same steps.

Case (1⩾). In Case (1⩾), as in (D.18), we write the cumulant term κ4(∆⩾,±
n (s, t))

using [84, Proposition 3.2.1]. Then, following the steps of (D.19), taking absolute values,
applying triangle and Jensen’s inequalities leads to |κ4(∆⩾,±

1,n (s, t))| ⩽ c1nE
[(
V ±

1 (t)−
V ±

1 (s)
)4]

with some c1 > 0. Following the fourth moment calculations through (D.24)–
(D.27) with Vun⩽

i and ∆⩾,±
n in place of Vi and ∆±

n , respectively, we obtain that
E[(∆⩾,±

1,n )4] can be bounded by sums of products of integrals of the form∫
Vun⩽

i ×T0⩽
|δs,t(N±(p))|m µ(dp) ⩽ c3u

−(mγ−1)+
n (t− s)m m ∈ {1, 2, 3, 4},

which was bounded using Lemmas D.8.2 (a) and D.8.6 (c) without imposing any
constraints on the parameter γ ∈ (1/2, 1). This, in turn, leads to the bounds

E
[(

∆⩾,±
1,n

)4]
⩽

∑
H1...,HQ

Q∏
q=1

cqu
−(mqγ−1)+
n (t− s)mq and

Q∑
q=1

mq ⩽ 4,

where the sum is over all partitions {H1 . . . , HQ} ⪯ {1, . . . , 4} of the indices {1, . . . , 4}
into Q groups, cq > 0, and mq is the number of factors in the qth group. The number
of factors in the terms are denoted by Q ∈ {1, . . . , 4} and mq ∈ {1, . . . , 4} for all
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indices q ∈ {1, . . . , Q}. Expanding the product, we obtain a similar bound regardless
of the value of Q ⩽ 4:

E
[(

∆⩾,±
1,n

)4]
⩽

∑
H1...,HQ

4∏
q=1

(
(t− s)mq

)

×
(
c4 + c5

∑
q⩽4

u−(mqγ−1)+
n + c6

∑
q1<q2⩽4

u
−((mq1 +mq2 )γ−2)+
n

+ c7
∑

q1<q2<q3⩽4
u

−((mq1 +mq2 +mq3 )γ−3)+
n + c8u

−(
∑4

q=1 mqγ−4)+
n

)
,

where c4, . . . , c8 > 0 are positive constants. As
∑Q
q=1mq ⩽ 4, each of the terms

involving un can be bounded by c9u
−(4γ−1)
n (t− s) with some constant c9 > 0. For n

blocks, we need to show that

nu−(4γ−1)
n (t− s) ∈ O(n4γ(t− s)1+η) ⇐⇒ nu−(4γ−1)

n ∈ O(n4γ(t− s)η).

Since t − s > n−1/2 and γ ∈ (1/2, 1), setting η = 1/3 and un = n−2/3 yields
n1+2/3(4γ−1) ∈ O(n4γ−1/6).

Case (3⩾). In Case (3⩾), we follow the same steps as in the proof of Lemma D.10.4
to conclude that |κ4(∆⩾,±

n (s, t))| ∈ O(n2/3(3γ−1)) if γ′ < 1/4, without any constraints
on parameter γ. The orders of the terms Tprod and Tcov are presented in Table D.2.

Case (2⩾). In Case (2⩾), we introduce the notations

Tprod :=
q∏
b=2

E
[ ∏
m∈M(2)

b

∆⩾,±
m,n

]
and Tcov :=

∣∣∣Cov
(
∆⩾,±
i,n ,

∏
m∈M(2)

1

∆⩾,±
m,n

)∣∣∣
for the product and the covariance terms, respectively, and bound the cumulant
|κ4(∆⩾,±

i,n , ∆⩾,±
j,n , ∆⩾,±

k,n , ∆⩾,±
ℓ,n )| as in (D.20) by |κ4(∆⩾,±

i,n ,∆⩾,±
j,n ,∆⩾,±

k,n ,∆⩾,±
ℓ,n )| ⩽

c10
∑
M(2)

1 ,...,M(2)
q
TprodTcov. To ease understanding, we expanded the formula for each

partition of {i, j, k, ℓ} in Table D.2. We bound E[∆⩾,±
k,n ∆⩾,±

ℓ,n ] using Cauchy–Schwarz
inequality:

E[∆⩾,±
k,n ∆⩾,±

ℓ,n ] ⩽ E
[(

∆⩾,±
k,n

)2]1/2 E
[(

∆⩾,±
ℓ,n

)2]1/2 = E
[(

∆⩾,±
1,n

)2]
⩽ E[V ⩾,±

1 (t)2],

where we used that ∆⩾,±
k,n and ∆⩾,±

ℓ,n are identically distributed in the second step, and
that V ⩾,±

i (t) is monotone in the second step. Following the calculations of Case (1⩾)
for the second moment, we have

E[(V ⩾,±
i )2] ⩽

Q∏
q=1

cqu
−(mqγ−1)+
n

Q∑
q=1

mq ⩽ 2,

where Q ∈ {1, 2} and mq ∈ {1, 2} for all indices q ∈ {1, . . . Q}. If Q = 2, then

E[(V ⩾,±
i )2] ⩽ c11

(
1 +

∑
q⩽2

u−(mqγ−1)+
n +

∑
q1<q2⩽2

u
−((mq1 +mq2 )γ−2)+
n

)
,
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Table D.2: Possible partitions of the indices {i, j, k, ℓ} in Case (2⩾) and Case (3⩾)

Case (2⩾)
partition Tprod order

{i}, {j, k, ℓ} 1 O(1)
{i}, {j}, {k, ℓ} E[∆⩾,±

k,n ∆⩾,±
ℓ,n ] O(n2/3(2γ−1))

{i}, {j, k}, {ℓ} E[∆⩾,±
ℓ,n ] O(1)

{i}, {j}, {k}, {ℓ} E[∆⩾,±
k,n ]E[∆⩾,±

ℓ,n ] O(1)

partition Tcov order
{i}, {j, k, ℓ}

∣∣Cov
(
∆⩾,±
i,n ,∆⩾,±

j,n ∆⩾,±
k,n ∆⩾,±

ℓ,n

)∣∣ O(n2/3(3γ−1))
{i}, {j}, {k, ℓ}

∣∣Cov
(
∆⩾,±
i,n ,∆⩾,±

j,n

)∣∣ O(1)
{i}, {j, k}, {ℓ}

∣∣Cov
(
∆⩾,±
i,n ,∆⩾,±

j,n ∆⩾,±
k,n

)∣∣ O(n2/3(2γ−1))
{i}, {j}, {k}, {ℓ}

∣∣Cov
(
∆⩾,±
i,n ,∆⩾,±

j,n

)∣∣ O(1)

Case (3⩾)
partition Tprod order

{i, j}, {k, ℓ} 1 O(1)
{i, j}, {k}, {ℓ} E[∆⩾,±

ℓ,n ] O(1)
{i}, {j}, {k, ℓ} E[∆⩾,±

i,n ] O(1)
{i}, {j}, {k}, {ℓ} E[∆⩾,±

i,n ]E[∆⩾,±
ℓ,n ] O(1)

partition Tcov order

{i, j}, {k, ℓ}
∣∣Cov

(
∆⩾,±
i,n ∆⩾,±

j,n ,∆⩾,±
k,n ∆⩾,±

ℓ,n

)∣∣ O(n2/3(3γ−1))
{i, j}, {k}, {ℓ}

∣∣Cov
(
∆⩾,±
i,n ∆⩾,±

j,n ,∆⩾,±
k,n

)∣∣ O(n2/3(3γ−1))
{i}, {j}, {k, ℓ}

∣∣Cov
(
∆⩾,±
j,n ,∆⩾,±

k,n ∆⩾,±
ℓ,n

)∣∣ O(n2/3(3γ−1))
{i}, {j}, {k}, {ℓ}

∣∣Cov
(
∆⩾,±
j,n ,∆⩾,±

k,n

)∣∣ O(1)

with some constant c11 > 0. We bound again each term in the parentheses involving un
by c12u

−(2γ−1)
n ∈ O(n2/3(2γ−1)) with some constant c12 > 0, where un = n−2/3. For

the first moments E[(V ⩾,±
i )], it is easy to see that they are elements of O(1). We move

on to the covariance term |Cov(∆⩾,±
i,n ,∆⩾,±

j,n ∆⩾,±
k,n ∆⩾,±

ℓ,n )| in the case |M (2)
1 | = 3. Note

that in this case, the product term is of order O(1). We apply again (D.28):∣∣Cov
(
∆⩾,±
i,n ,∆⩾,±

j,n ∆⩾,±
k,n ∆⩾,±

ℓ,n

)∣∣ =
∣∣E[

Cov
(
∆⩾,±
i,n ,∆⩾,±

j,n ∆⩾,±
k,n ∆⩾,±

ℓ,n

∣∣ P)]∣∣,
and we bound the conditional covariance using bilinearity as in (D.29), where we use
Vun⩽
i , Vun⩽

j , Vun⩽
k , Vun⩽

ℓ in place of Vi, Vj , Vk, Vℓ for the domains of the points P1,
P2, P3, P4, respectively. The arguments for (D.30)–(D.32) can be applied without any
changes, and we obtain the bound

∣∣κ4(∆⩾,±
n (s, t))

∣∣ ⩽ c13 E
[
n−1∑
a=0

∑
i,j,k,ℓ

ρ⩾(i,j,k,ℓ)=a

∑
P1∈P∩(Vun⩽

i ∩T0⩽),P2∈P∩(Vun⩽
j ∩T0⩽)

P3∈P∩(Vun⩽
k

∩T0⩽),P4∈P∩(Vun⩽
ℓ

∩T0⩽)

A(P 4,σσσ4)
]
.

Depending on which of the points P2, P3, P4 are identical, we apply the Mecke formula
to all the cases. The integrals with respect to p3, p4 factor again leading to factors
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with bounds∫
Sun⩽

[j−a,j+a+1]×T0⩽
|N±(p3, σ3)|m3 µ(dp) ⩽ c14au

−(m3γ−1)+
n m3 ∈ {0, 1, 2}∫

Sun⩽
[j−a,j+a+1]×T0⩽

|N±(p4, σ4)|m4 µ(dp) ⩽ c14au
−(m4γ−1)+
n m4 ∈ {0, 1, 2},

with some constant c14 ∈ R, where we used Lemmas D.8.2 (a) and D.8.6 (b) with
u− = un > 0, which requires no constraint on γ ∈ (1/2, 1). For the integral with
respect to p2, similarly to (D.23), the following bound holds:∣∣κ4(∆⩾,±

n (s, t))
∣∣ ⩽ c15

∏
q∈{3,4}

u−(mqγ−1)+
n

×
∫
Sun⩽

n ×T0⩽

∫
Sun⩽

n ×T0⩽
|N±(p1, σ1)|m1 |N±(p1, σ1) ∩N±(p2, σ2)|

× |N±(p2, σ2)|m2(|x1 − x2|ma + 1)µ(dp2)µ(dp1),

where m1 = 0 and
∑ma
q=1mq ⩽ 2, ma ∈ {0, 1, 2}. The temporal part can be bounded

with Lemma D.8.6 (f), and the spatial part is bounded by Lemma D.8.2 (f) with
u− = un. Then,∣∣κ4(∆⩾,±

n (s, t))
∣∣ ⩽ c16n

∏
q∈{3,4}

u−(mqγ−1)+
n

(
u−((1+m2+ma)γ−1)+−((1+m1)γ−1)+
n

+ u−((1+m1+ma)γ−1)+−((1+m2)γ−1)+
n

)
,

where c16 > 0 is a large enough constant. To bound each term in the expansion of
the product above, we would like to find the most negative exponent of un. The
exponent −(mqγ − 1)+ is nonzero only if mq ⩾ 2. Looking into Table D.1, this
happens only if P3 = P4, in which case m1 = m2 = 0 and ma = 1. Then, the
exponent of un can be bounded by −2(2γ − 1). Otherwise, −(mqγ − 1)+ = 0, and
then m1 +m2 +ma ⩽ 2. In these cases, we bound the exponent of un by −(3γ − 1).
Then, as un = n−2/3, Tcov ∈ O(n2/3(3γ−1)), and thus TprodTcov ∈ O(n2/3(3γ−1)) since
E[∆⩾,±

k,n ∆⩾,±
ℓ,n ] can only appear in Tprod if M (2)

1 = {j}. If we look at the partition {j},
{k, ℓ} of the indices j, k, ℓ, then the product term is or order O(n2/3(2γ−1)), and all
the exponents m1 = m2 = m3 = m4 = ma = 0 in the covariance term. Then, the
covariance term is of order O(1), and TprodTcov ∈ O(n2/3(2γ−1)). Following the same
train of thought, we arrive at the orders of the terms Tprod and Tcov as in Table D.2.
Thus, we conclude that∣∣κ4(∆⩾,±

n (s, t))
∣∣ = c16nTprodTcov ∈ O(n2γ+1/3),

as desired.

Finally, Condition (3) of Theorem D.6.2 is about the convergence of the expected
increments E

[
∆⩾,±
n (tk, tk+1)

]
, which in proved next.

Proof of Lemma D.11.4. Following the same argument as in the proof of Lemma D.6.5,
the expectation E[S⩾,±

n (t)] ⩽ E[S±
n (t)] can be bounded identically by Lemmas D.8.2 (a)
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and D.8.6 (a) for γ ∈ (0, 1). As tk = kn−1/2, E
[
∆⩾,±
n (tk, tk+1)

]
∈ O(n1/2), and thus

for γ > 1/2,

max
k⩽⌊n1/2⌋

(
n−γ E

[
∆⩾,±
n (tk, tk+1)

])
∈ O(n−(γ−1/2)) ⊂ o(1),

as required.

D.C Proofs of Propositions D.7.7, D.7.11, and
Lemma D.7.10 used in the proof of Section D.7

Proposition D.7.7 stated that the summation functional χ(η)(t) is almost surely
continuous with respect to the Skorokhod metric dSk. In the proof of Proposition D.7.7,
we follow the argument of Resnick [93, Section 7.2.3]. Our proof is slightly more
involved since we have to deal with vertices having potentially large lifetimes, and we
need to restrict the domain of the summation functional χ to a compact set K. In the
first step, we show that if two point measures are close, then the number of points
in a compact set are almost surely identical. In the second step, we show that as the
points of the point measures are close, the respective functions that the summation
functional maps these measures are also close with respect to the Skorokhod metric
dSk.

Proof of Proposition D.7.7. Let η ∈ Nloc(K) denote a point measure on the domain K.
Let us define M := M(η) := max(ji,bi,ℓi)∈η ℓi + 1, and set Kε,M := {(j, b, ℓ) ∈ Kε : ℓ ⩽
M}, such that η( · ) = η( · ∩Kε,M ). We define a subset Λε,M of point measures as
follows:

Λε,M :=
{
η ∈ Nloc(Kε,M ) : η(Kε,M ) <∞, η(∂Kε,M ) = 0,

η
(
{(j, b, ℓ) ∈ Kε,M : b = 0}

)
= 0,

η
(
{(ji, bi, ℓi) ∈ Kε,M : ∃j ̸= i : bi = bj}

)
= 0,

η
(
{(ji, bi, ℓi) ∈ Kε,M : ∃j ̸= i : bi + ℓi = bj + ℓj}

)
= 0,

η
(
{(ji, bi, ℓi) ∈ Kε,M : ∃j : bi = bj + ℓj}

)
= 0

}
.

We now follow two steps:

(1) first, we show that P∞ ∈ ΛM(P∞) almost surely;

(2) then, we show that the functional χ is continuous on Λε,M .

P∞ ∈ ΛM(P∞) almost surely. Since the expected number of points E[P∞(Kε)] is
finite, the number of points P∞(Kε) in the domain Kε is almost surely finite. Then,
M(P∞) <∞ almost surely, and then Kε,M(P∞) is almost surely compact containing
all the points contributing to S(3)

n,ε( · ). Recall that in the dimension J, the set Kε,M is
compactified at ∞. We check each condition in the definition of Λε,M to show that
P(η ∩Kε,M ∈ Λε,M ) = 1. The coordinates Ji of the points (Ji, Bi, Li) ∈ P∞ are i.i.d.
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random variables with distribution εν([c̃εγ ,∞) ∩ · ). Furthermore, (Bi, Li) are also
i.i.d. with joint distribution

P(Bi ⩽ b, Li ⩽ ℓ)

=



1
2

∫ b

−ℓ

∫ ℓ

−b′
PL(dℓ′) db′ = 1

2
(
eb − (1 + b+ ℓ)e−ℓ) if b ∈ [−ℓ, 0]

1
2

∫ 0

−ℓ

∫ ℓ

−b′
PL(dℓ′) db′ + 1

2

∫ b

0

∫ ℓ

0
PL(dℓ′) db′

= 1
2

(
1 + b− (1 + b+ ℓ)e−ℓ) if b ∈ [0, 1].

Note that at b = 0, both parts of the distribution are equal, and thus the distribution
of the points (Ji, Bi, Li) is continuous without any atoms.

• The first condition states that the total number of points we consider is finite.
This holds almost surely since the expected number of points ν([c̃εγ ,∞))c1 = εc1
in the domain Kε,M is finite, for some constant c1 > 0.

• The second and third conditions require that no points can be born or die at
the boundaries of the time interval [0, 1], and no points can have a lifetime
of exactly M . As the distribution of the points is continuous, the second and
third conditions hold almost surely as well, since the corresponding sets have
measure 0.

• The last three conditions require that all points are born and die at different
times, which holds almost surely since the distributions of the coordinates Bi, Li
are continuous:

P
(⋃
i<j

{Bi = Bj}
)
⩽

∑
i<j

P
(
{Bi = Bj}

)
= 0,

which can also be applied to the final two conditions.

Thus, P(P∞ ∈ Λε,M ) = 1.

χ is continuous on Λε,M . Next, we show that if η ∈ Λε,M , then χ is continuous
at η, i.e., if ηn

v−→ η is a converging sequence of point measures in the vague topology,
then χ(ηn)→ χ(η) in D([0, 1],R). Note that ηn

v−→ η if and only if for all continuous
functions f with compact support |

∫
f dηn −

∫
f dη| → 0. Also note that the function

a 7→ ν([a,∞)) from (0,∞) to (0,∞) is continuous by Lemma D.7.6. Thus, the
restriction of the jumps using the indicator 1{J ⩾ c̃εγ} is almost surely continuous.
Consider two point measures η1, η2 ∈ Λε,M . We would like to show that if η1, η2 are close
to each other, then the summation functionals χ(η1), χ(η2) are close in the Skorokhod
space D([0, 1],R). Note that Kε,M is compact, and η ∈ Λε,M almost surely. We label
the k ∈ N number of points (ji, bi, ℓi) ∈ supp(η) such that η( · ) =

∑k
i=1 δ(Ji,Bi,Li)( · )

and B1 < · · · < Bk, which is possible since η ∈ Λε,M . Next, we show that there
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exists an index n0 ∈ N such that for all n ⩾ n0, there exists a labeling of the points
(j(n)
i , b(n)

i , ℓ(n)
i ) ∈ ηn such that

ηn( · ∩Kε,M ) =
k∑
i=1

δ(j(n)
i ,b

(n)
i ,ℓ

(n)
i )( · ) and (j(n)

i , b
(n)
i , ℓ

(n)
i )→ (ji, bi, ℓi),

for all indices i ∈ {1, . . . , k}. We pick a δ > 0 small enough such that Gδ(P )∩Gδ(P ′) =
∅ for all distinct pair of points P ̸= P ′ in η and Gδ(P ) ⊆ Kε,M , where Gδ(P ) is the ball
of radius δ around a point P ∈ η. For a large enough n, we have that (P (n)

i ) ∈ Gδ(Pi)
for all i ∈ {1, . . . , k}. Then, by Resnick [93, Theorem 3.2], ηn(Gδ(Pi)) → η(Gδ(Pi))
for all indices i. Since ηn, η are integer valued, ηn(Gδ(Pi)) = η(Gδ(Pi)) for n ⩾ n0
with some large enough n0. Thus, the total number of points k in the set Kε,M is
the same for all measures {ηn} and η if n ⩾ n0, and there is a possible labeling of
the temporal coordinates T :=

(
{0, 1} ∪

⋂k
i=1{bi, bi + ℓi} ∩ [0, 1]

)
such that 0 = τ1 <

· · · < τk′ = 1, where τi is the ith smallest element in the set T , and the number of
elements in the set T is k′. We denote by τ (n)

i the corresponding elements of the
set T (n) :=

(
{0, 1} ∪

⋂k
i=1{b(n)

i , b(n)
i + ℓ(n)

i } ∩ [0, 1]
)
.

Next, we define a sequence of homeomorphisms λn : [0, 1]→ [0, 1] by λn(τ (n)
i ) := τi

for all i ∈ {1, . . . , k′}, and λn( · ) is defined by linear interpolation between these points.
Note that the domain of λn was chosen so that it is defined for all time instants
{bi} ∪ {bi + ℓi}, i ∈ {1, . . . , k′}. The graph of the homeomorphism λn is shown in
Figure D.8. The next lemma bounds the Skorokhod distance dSk(χ(ηn), χ(η)) of the
functionals χ(ηn) and χ(η), which was defined in Definition D.7.1.

Lemma D.C.1 (Skorokhod distance between χ(ηn) and χ(η)). The Skorokhod distance
between χ(ηn) and χ(η) is bounded by

dSk(χ(ηn), χ(η)) ⩽ (ck + 3)δ,

where c is a constant depending on the distribution of the points in η.

+
−M

+
0

+
1

+
M + 1

+0

+1

+−M

+M + 1

λn

Figure D.8: Graph of the temporal transformation λn
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Thus, by Lemma D.C.1, χηn → χ(η) in D([0, 1],R) almost surely.

In the next proof, we bound the Skorokhod distance dSk(χ(ηn), χ(η)) of the func-
tionals χ(ηn) and χ(η) used in the proof of Proposition D.7.7.

Proof of Lemma D.C.1. The Skorokhod distance can be bounded by

dSk(χ(ηn), χ(η)) ⩽ ∥λn − I∥ ∨ ∥χ(ηn) ◦ λ−1
n − χ(η)∥.

For the first term, we have

∥λn − I∥ = sup
i∈{1,...,k′}

sup
s∈[τ (n)

i ,τ (n)
i+1]

∣∣λn(s)− s
∣∣

= sup
i∈{1,...,k′}

sup
s∈[τ (n)

i ,τ (n)
i+1]

∣∣∣τi + τi+1 − τi
τ (n)
i+1 − τ (n)

i

(
s− τ (n)

i

)
− s

∣∣∣
= sup

i∈{1,...,k′}
sup

s∈[τ (n)
i ,τ (n)

i+1]

∣∣∣τi − τ (n)
i +

( τi+1 − τi
τ (n)
i+1 − τ (n)

i

− 1
)
(s− τ (n)

i )
∣∣∣.

Next, we apply the triangle inequality, and use that s− τ (n)
i ⩽ τ (n)

i+1 − τ (n)
i :

∥λn − I∥ ⩽ sup
i∈{1,...,k′}

{∣∣τi − τ (n)
i

∣∣ +
∣∣∣ τi+1 − τi
τ (n)
i+1 − τ (n)

i

− 1
∣∣∣(τ (n)

i+1 − τ
(n)
i

)}
⩽ 3δ.

For the second term,

∥χ(ηn) ◦ λ−1
n − χ(η)∥

=
∥∥∥ ∑

(j(n),b(n),ℓ(n))∈ηn

j(n)(λ−1
n (t)− b(n))1{j(n) ⩾ c̃εγ}1{b(n) ⩽ λ−1

n (t) ⩽ b(n) + ℓ(n)}

−
∑

(j,b,ℓ)∈η
j(t− b)1{j ⩾ c̃εγ}1{b ⩽ t ⩽ b+ ℓ}

∥∥∥
=

∥∥∥ k∑
i=1

(
j

(n)
i (λ−1

n (t)− b(n)
i )1{b(n)

i ⩽ λ−1
n (t) ⩽ b

(n)
i + ℓ

(n)
i }

− ji(t− bi)1{bi ⩽ t ⩽ bi + ℓi}
)∥∥∥.

Using the identity abc − a′b′c′ = (a − a′)bc + a′(b − b′)c + a′b′(c − c′) for the above
expression, we have

∥χ(ηn) ◦ λ−1
n − χ(η)∥

= sup
t∈[0,1]

∣∣∣∣ k∑
i=1

(
j

(n)
i − ji

)(
λ−1
n (t)− b(n)

i

)
1{b(n)

i ⩽ λ−1
n (t) ⩽ b

(n)
i + ℓ

(n)
i }

+ ji
(
(λ−1
n (t)− b(n)

i )− (t− bi)
)
1{bi ⩽ t ⩽ bi + ℓi}

+ ji(t− bi)
(
1

{
b

(n)
i ⩽ λ−1

n (t) ⩽ b
(n)
i + ℓ

(n)
i

}
− 1

{
bi ⩽ t ⩽ bi + ℓi

})∣∣∣∣.
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Next, we apply the triangle inequality and examine the three terms separately. For
the first term, λ−1

n (t)b(n)
i < ∞ whenever the indicator is 1, and |j(n)

i − ji| < δ. In
the second term, ji < ∞ almost surely, thus we set c1 := supi∈{1,...,k} ji < ∞. Then,
|(λ−1

n (t)− b(n)
i )− (t− bi)| = |λ−1

n (t)− t− (b(n)
i − bi)| ⩽ |λ−1

n (t)− t|− |b(n)
i − bi|. We have

seen that |λ−1
n (t)− t| ⩽ 3δ above, and |b(n)

i − bi| ⩽ δ by assumption for all indices i,
thus the second term is bounded by 4c1δ. In the last term, ji(t − bi) < ∞, and we
need to show that the indicators are the same.

• Note that b(n)
i < 0 if and only if bi < 0. If bi < 0, then 1{b(n)

i ⩽ λ−1
n (t)} =

1
{
bi ⩽ t

}
= 1. Otherwise, 1{b(n)

i ⩽ λ−1
n (t)} = 1{λn(b(n)

i ) ⩽ t} = 1{bi ⩽ t}.

• Similarly, b(n)
i + ℓ(n)

i > 1 if and only if bi + ℓi > 1. If bi + ℓi > 1, then
1{λ−1

n (t) ⩽ b(n)
i +ℓ(n)

i } = 1
{
t ⩽ bi+ℓi

}
= 1. Otherwise, 1{λ−1

n (t) ⩽ b(n)
i +ℓ(n)

i } =
1{t ⩽ λn(b(n)

i + ℓ(n)
i )} = 1{t ⩽ bi + ℓi}.

Then, the indicators are the same, and the last term is also 0. Then,

∥χ(ηn) ◦ λ−1
n − χ(η)∥ = sup

t∈[0,1]

k∑
i=1

c2δ = c2kδ

for some constant c2 > 0. Considering the above two terms, we have

inf
λ

(
∥λ− I∥ ∨ ∥χ(ηn) ◦ λ−1 − χ(η)∥

)
⩽ (c2k + 3)δ,

as required.

The following proofs show that the sequence S∗
εn

is Cauchy in probability and
almost surely with respect to the supremum norm, and we follow a similar approach
to what was done in Step 3.

Proof of Lemma D.7.10. To ease notations, we set ε′
n := c̃εγn for all indices n ⩾ 0.

Furthermore, without loss of generality, we assume that n ⩽ m. Then, similarly to
Step 2, we write

E := lim
N↑∞

sup
N⩽n⩽m

P
(∥∥∥ ∑

(J,B,L)∈P∞

J(t−B)1{J ∈ [ε′
m, ε

′
n]}1{B ⩽ t ⩽ B + L}

− c
(
(ε′
m)−(1/γ−1) − (ε′

n)−(1/γ−1))∥∥∥ ⩾ 2δ
)
,

where c := c̃1/γ/(1− γ). We use the usual plus-minus decomposition again with the
notation

S
∗,+
ε (t) :=

∑
(J,B,L)∈P∞

J(((B + L) ∧ t)−B)1{J ⩾ ε′}1{B ⩽ t}1{B + L ⩾ 0}

− c(ε′)−(1/γ−1)(t+ 1)

S
∗,−
ε (t) :=

∑
(J,B,L)∈P∞

JL1{J ⩾ ε′}1{B + L ∈ [0, t]} − c(ε′)−(1/γ−1),
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where we applied Lemma D.8.6 (a) to calculate the expectations. Then, we have that
S∗
ε = S∗,+

ε − S∗,−
ε , and the triangle inequality gives E ⩽ E+ + E−, where

E+ := lim
N↑∞

sup
N⩽n⩽m

P
(∥∥∥S∗,+

εn
− S∗,+

εm

∥∥∥ ⩾ δ
)

and

E− := lim
N↑∞

sup
N⩽n⩽m

P
(∥∥∥S∗,−

εn
− S∗,−

εm

∥∥∥ ⩾ δ
)
.

Similarly to Step 3, ∥S∗,−
εn
−S∗,−

εm
∥ in the term E− is a martingale since S∗,−

εn
is a sum of

independent random variables, and the expectation is equal to 0 by the independence
of the points (J,B, L) ∈ P∞ in the definition of S∗,−

εn
. Then, by Doob’s martingale

inequality, we have

E− ⩽ lim
N↑∞

sup
N⩽n⩽m

δ−1 E
[∣∣S∗,−

εn
(1)− S∗,−

εm
(1)

∣∣]
⩽ lim

N↑∞
sup

N⩽n⩽m
δ−1 Var

( ∑
(J,B,L)∈P∞

JL1{J ∈ [ε′
m, ε

′
n]}1{B + L ∈ [0, 1]}

)1/2
,

where we applied the Cauchy–Schwarz inequality in the second step. The variance is
calculated using the independence of the points, and then Mecke’s formula gives

Var
( ∑

(J,B,L)∈P∞

JL1{J ∈ [ε′
m, ε

′
n]}1{B + L ⩽ 1}

)
=

∫
T[0,1]

∫ ε′
n

ε′
m

j2ℓ2ν(dj)µt(d(b, ℓ))

=
∫ ε′

n

ε′
m

j2ν(dj) = 2c̃1/γγ

2γ − 1
(
(ε′
n)2−1/γ − (ε′

m)2−1/γ)
,

where, in the second step, we used that the temporal part of the integral is 2 by Part (a).
Note that the variance is similar to the variance given in the proof of Lemma D.7.9.
Then, E− = 0 since γ > 1/2. For the E+ term, we have

E+ = lim
N↑∞

sup
N⩽n⩽m

P
(

sup
t∈[0,1]

∣∣∣∣ ∑
(J,B,L)∈P∞

J(t−B)1{J ∈ [ε′
m, ε

′
n]}

× 1{B ⩽ t}1{B + L ⩾ 0}

− c
(
(ε′
m)−(1/γ−1) − (ε′

n)−(1/γ−1))(t+ 1)
∣∣∣∣ ⩾ δ

)
We use the same strategy as in Step 3, and similarly to the Definition (D.34), we
introduce H ′

ε′
m,ε

′
n
(t) and write the edge count as an integral:

H ′
ε′

m,ε
′
n
(t) :=

∑
(J,B,L)∈P∞

J 1{J ∈ [ε′
m, ε

′
n]}1{t ∈ [B,B + L]}1{B + L ⩾ 0}

S
∗,+
ε (t) = S

∗,+
ε (0) +

∫ t

0
H ′
ε′

m,ε
′
n
(t′)− E[H ′

ε′
m,ε

′
n
(t′)] dt′,
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for and 0 < εm ⩽ εn. Then, following Step 3, we apply the triangle inequality twice to
bound E+:

E+ = lim
N↑∞

sup
N⩽n⩽m

P
(

sup
t∈[0,1]

∣∣∣∣S∗
ε′

m
(0)− S∗

ε′
n
(0)

+
∫ t

0
H ′
ε′

m,ε
′
n
(t′)− E

[
H ′
ε′

m,ε
′
n
(t′)

]
dt′

∣∣∣∣ ⩾ δ

)
⩽ lim

N↑∞
sup

N⩽n⩽m

(
P

(∣∣∣S∗
ε′

m
(0)− S∗

ε′
n
(0)

∣∣∣ ⩾ δ/2
)

+ P
(∫ 1

0

∣∣∣H ′
ε′

m,ε
′
n
(t′)− E[H ′

ε′
m,ε

′
n
(t′)]

∣∣∣ dt′ ⩾ δ/2
))
,

where, we used that supt∈[0,1]
∫ t

0 | · | ⩽
∫ 1

0 | · |. For the first term, Chebyshev’s inequality
yields

P
(∣∣S∗

εm
(0)− S∗

εn
(0)

∣∣ ⩾ δ/2
)
⩽ 4δ−2 Var

(
S∗
εm

(0)− S∗
εn

(0)
)

= 4δ−2
∫
T0⩽
⩽0

∫ ε′
n

ε′
m

j2b2ν(dj)µt(d(b, ℓ)) = 16c̃1/γγδ−2

2γ − 1
(
(ε′
n)2−1/γ − (ε′

m)2−1/γ)
,

where we applied the Mecke formula to calculate the variance in the second step, and
in the last step we used that the integral of the temporal part is 2 by Lemma D.8.6 (a).
This term converges to 0 as n,m→ 0 since γ > 1/2. For the second term, we follow
again the same arguments as in Step 3, and first we apply Markov’s and then Jensen’s
inequality:

P
(∫ 1

0

∣∣∣H ′
ε′

m,ε
′
n
(t′)− E[H ′

ε′
m,ε

′
n
(t′)]

∣∣∣ dt′ ⩾ δ/2
)

⩽ 2δ−1 E
[∫ 1

0

∣∣∣H ′
ε′

m,ε
′
n
(t′)− E[H ′

ε′
m,ε

′
n
(t′)]

∣∣∣ dt′
]

⩽ 2δ−1
∫ 1

0
Var(H ′

ε′
m,ε

′
n
(t′))1/2 dt′.

We calculate the variance using Mecke’s formula:

Var(H ′
ε′

m,ε
′
n
(t′)) =

∫
T0⩽

∫ ε′
n

ε′
m

j2
1{b ⩽ t ⩽ b+ ℓ} ν(dj)µt(d(b, ℓ))

= 2c̃1/γγ

2γ − 1
(
(ε′
n)2−1/γ − (ε′

m)2−1/γ)
(t′ + 1),

where the temporal integral is t′ + 1 by Part (a). Then,

P
(∫ 1

0

∣∣∣H ′
ε′

m,ε
′
n
(t′)− E[H ′

ε′
m,ε

′
n
(t′)]

∣∣∣ dt′ ⩾ δ/2
)

⩽
4
3δ

−1
(2c̃1/γγ

2γ − 1
(
(ε′
n)2−1/γ − (ε′

m)2−1/γ))1/2(
23/2 − 1

)
,

which converges to 0 as n,m→∞ since γ > 1/2.
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In the next proof showing the Cauchy property almost surely, we follow the approach
of the proof of Property 2 in [93, Proposition 5.7].

Proof of Proposition D.7.11. Let Λ̃ be a set with P(Λ̃) = 1 such that if ω ∈ Λ̃, then
the sequence {S∗

εk
( · , ω), k ⩾ 1} is Cauchy with respect to the uniform convergence

on [0, 1]. We prove the Cauchy property by showing supm,n⩾N
∥∥S∗

εm
−S∗

εn

∥∥→ 0 almost
surely as N →∞. Since the supremum is nonincreasing in N , it is enough to show
that it converges to 0 in probability [93, Equation (5.45)]. Then, with δ′ := δ/4, we
have

lim
N↑∞

P
(

sup
m,n⩾N

∥∥S∗
εm
− S∗

εn

∥∥ ⩾ δ
)

= lim
N↑∞

lim
M↑∞

P
(

sup
m,n∈{N,...,M}

∥∥S∗
εm
− S∗

εn

∥∥ ⩾ δ
)

⩽ lim
N↑∞

lim
M↑∞

P
(

sup
n∈{N,...,M}

∥∥S∗
εn
− S∗

εN

∥∥ ⩾ 2δ′
)
,

where in the last step we used that by the triangle inequality,∥∥S∗
εm
− S∗

εn

∥∥ ⩽
∥∥S∗

εm
− S∗

εN

∥∥ +
∥∥S∗

εN
− S∗

εn

∥∥,
but then

sup
m,n∈{N,...,M}

∥∥S∗
εm
− S∗

εn

∥∥ ⩽ 2 sup
n∈{N,...,M}

∥∥S∗
εn
− S∗

εN

∥∥.
Again, by the triangle inequality, we have that∥∥S∗

εM
− S∗

εN

∥∥ ⩾
∥∥S∗

εi
− S∗

εN

∥∥− ∥∥S∗
εM
− S∗

εi

∥∥,
which implies that{∥∥S∗

εi
− S∗

εN

∥∥ > 2δ′,
∥∥S∗

εM
− S∗

εi

∥∥ ⩽ δ′
}
⊆

{∥∥S∗
εM
− S∗

εN

∥∥ > δ′
}

for all i,

and then
M⋃

i=N+1

{
max

k∈{N,...,i−1}

(∥∥S∗
εk
− S∗

εN

∥∥)
⩽ 2δ′,

∥∥S∗
εi
− S∗

εN

∥∥ > 2δ′,
∥∥S∗

εM
− S∗

εi

∥∥ ⩽ δ′
}

⊆
{∥∥S∗

εM
− S∗

εN

∥∥ > δ′
}
.

Note that the union is a disjoint union, since for all k ∈ {N . . . , i− 1}, S∗
εk

is within a
distance of 2δ′ from S∗

εN
, and S∗

εi
is further from S∗

εN
than δ′. Thus, we have

P
(∥∥S∗

εM
− S∗

εN

∥∥ > δ′
)

⩾
M∑

i=N+1
P

(
max

k∈{N,...,i−1}

(∥∥S∗
εk
− S∗

εN

∥∥)
⩽ 2δ′,

∥∥S∗
εi
− S∗

εN

∥∥ > 2δ′,
∥∥S∗

εM
− S∗

εi

∥∥ ⩽ δ′
)

=
M∑

i=N+1
P

(
max

k∈{N,...,i−1}

(∥∥S∗
εk
− S∗

εN

∥∥)
⩽ 2δ′,

∥∥S∗
εi
− S∗

εN

∥∥ > 2δ′
)

× P
(∥∥S∗

εM
− S∗

εi

∥∥ ⩽ δ′
)
,
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where in the last step we used the independence of the points whose jumps are in
[εi, εN ] and those whose jumps are between [εM , εi]. Then, for the last term, we have
P

(∥∥S∗
εM
− S∗

εi

∥∥ ⩽ δ′) → 1 as N → ∞, where we applied Lemma D.7.10. Now, we
choose N ⩾ N0 large enough such that P(maxi∈{N,...,M}(∥S∗

εM
− S∗

εi
∥) ⩽ δ′) ⩾ 1/2.

Then, continuing the lower bound for P(∥S∗
εM
− S∗

εN
> δ′∥), we have

2P(∥S∗
εM
− S∗

εN
∥ > δ′)

⩾
M∑

i=N+1
P

(
max

k∈{N,...,i−1}

(∥∥S∗
εk
− S∗

εN

∥∥)
⩽ 2δ′,

∥∥S∗
εi
− S∗

εN

∥∥ > 2δ′
)

= P
(

max
n∈{N+1,...,M}

(∥∥S∗
εn
− S∗

εN

∥∥)
> 2δ′

)
.

The second application of Lemma D.7.10 gives that limN↑∞ limM↑∞ 2P(
∥∥S∗

εM
−S∗

εN

∥∥ >
δ′) = 0. Then, limN↑∞ limM↑∞ P(supm,n∈{N,...,M}∥S∗

εm
− S∗

εn
∥ ⩾ δ) = 0.
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Errata

In this section, the corrections made to the included papers are summarized.

• The notation in the included papers has been unified to match the notation
used in the thesis. This includes changes to symbols, abbreviations, and other
notational elements.

• The formatting of the included papers has been adjusted to match the overall
style of the thesis. This includes changes to the layout, numbering of the sections,
theorems and figures, font size and type, line spacing, margins, line breaks in
the formulas, and other formatting elements to ensure consistency throughout
the document.

• Typographical and grammatical errors in the included papers have been corrected
including commas, spacing, and capitalization.

• References of the included papers have been updated to the latest versions.
Furthermore, the references of all the papers are now listed collectively in the
bibliography at the end of the thesis. References of the included papers to each
other are replaced with the corresponding chapter numbers in the thesis.

• For references to equations, the word “Equation” is removed to match the
notation used in the thesis.

• Date formats have been standardized to the format “31 October 2025”.

• The thousand separators are changed from , to space.

The below list contains the individual corrections that could affect understand-
ing, including mathematical mistakes, wrong references, misprints in formulas, or
misleading wording. Furthermore, in several places minor typographical corrections
have been made, and the wording has been refined to enhance clarity and readability;
these changes do not affect the mathematical content or meaning and are not listed
individually.

Paper A

• In the model section, the display describing the regular variation of the profile
function φ is changed from

lim
r↑∞

φ(tr)/φ(r) = tα for all t > 0
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to
lim
r↑∞

φ(tr)/φ(r) = t−α for all t > 0.

• In Section A.4, the display

degf (x) :=
∑

y∈P̃s : y↔x

f(|Bx−y(o)|,Wx,Wy).

is changed to

degf (x) :=
∑

y∈P̃s : y↔x

f(|B|x−y|(o)|,Wx,Wy).

Paper B

• In mathematical formulas, the notation for distinct elements a1, a2 of a set A is
changed from “a1, a2 ∈ A distinct” to “a1, a2 ∈ A2

̸=”.

• In the entire paper, the mark space was changed from [0, 1] to (0, 1].

• In Section B.2 at the definition of the degree distribution dm,m′(k), “generalized
vertex-degree distribution” is changed to “generalized simplex-degree distribu-
tion”.

• Below the definition of the distribution dm,m′(k), the text “the distribution of
the number of m′-simplices incident to o” should read “the distribution of the
number of m′-simplices incident to ∆∗

m”.

• The title of Theorem B.2.1 is changed from “Power law for the typical vertex &
edge degree” to “Power law for the typical simplex degree”.

• In Theorem B.2.1, the expression m′ ⩾ m ⩾ 0 is changed to m′ > m ⩾ 0.

• In Theorem B.2.2, the sentence “Then, Var(βn,q)−1/2(βn,q−E[βn,q]) converges in
distribution to a standard normal distribution.” is changed to “Then, n−1/2(βn,q−
E[βn,q]) converges in distribution to a normal distribution.”.

• In Section B.3, the display

Bk := B′
k× [0, β′k]m :=

( ∏
j⩽m+1

[(j/(Mmk))1/γ , ((j+1)/(Mmk))1/γ ]
)
× [0, β′k]m

is changed to

Bk := [0, β′k]m ×B′
k with B′

k :=
m∏
j=0

[( j

Mmk

)1/γ
,
( j + 1
Mmk

)1/γ]
.

• In Section B.3, three occurrences of the notation b′ are changed to β′.

• At the end of Section B.3, the text “implies that P(P(Ck) ⩾ k)→ 1 as k →∞”
is changed to “implies that P(P(Bk) ⩾ k)→ 1 as k →∞”.
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• In Section B.3, the text “the higher-order degree of the typical vertex, o = (0, U)”
is changed to “the higher-order degree of the typical simplex ∆∗

m”.

• In Section B.3, the last display of the Proof of reduction to m′ = m + 1 was
changed from

P
(

max
Pi∈M(o)

Dout(Pi)m
′−m ⩾ kε

)
⩽

∫
R

∫ 1

u
P

(
Dout(x)m′−m ⩾ kε

)
1{(x, v) ∈M(o)}dx dv

= P
(
Dout(o) ⩾ kε/(m′−m))µ(u).

to
P

(
max

Pi∈M(o)
Dout(Pi)m

′−m ⩾ kε
)

⩽
∫
R

∫ 1

u
P

(
Dout(x)m′−m ⩾ kε

)
1{(x, v) ∈M(o)}dv dx

= P
(
Dout(o) ⩾ kε/(m′−m))µ(u).

• In Equation (B.3), the symbol ∆m is changed to ∆∗
m.

• In Section B.5, in the first display about the edge count Sn is changed from

Sn =
∑
i⩽n

Ti :=
∑
i⩽n

∑
Pj∈[i−1,i]×[0,1]

Din(Pj)

to
Sn =

∑
i⩽n

Ti :=
∑
i⩽n

∑
Pj∈P∩([i−1,i]×(0,1])

Din(Pj).

• In three cases, the notation for the point in the origin with mark u was incorrectly
written (u, 0), which should be (0, u). This is corrected in the tick label of
Figure B.3, and in the enumeration listing the steps of the simulation of a single
network in Section B.7.

Paper C

• In the entire paper, the mark space was changed from [0, 1] to (0, 1].

Paper D

• In the entire paper, the mark space was changed from [0, 1] to (0, 1].

• In Section D.2, the connection rule between two vertices in the bipartite
graph Gbip is changed from “A pair of vertices P ∈ P and P ′ ∈ P ′ are con-
nected in the bipartite graph Gbip := Gbip(P,P ′) if and only if the following two
conditions hold:

|X − Z| ⩽ βU−γW−γ′ and B ⩽ R ⩽ B + L,

255



where β > 0 and γ, γ′ ∈ (0, 1) are real parameters.” to “A pair of vertices
p := (x, u, b, ℓ) ∈ S× T and p′ := (z, w, r) ∈ S× R is connected if and only if the
following two conditions hold:

|x− z| ⩽ βu−γw−γ′ and b ⩽ r ⩽ b+ ℓ,

where β > 0 and γ, γ′ ∈ (0, 1) are real parameters. Using this connection rule,
we define the bipartite graph Gbip := Gbip(P,P ′) with vertex sets P and P ′.”

• In Section D.2, the text “This means that a few vertices with very high degrees
dominate the edge count, leading to a heavy-tailed distribution. Thus, if γ > 1/2,
the limiting process is not a Gaussian process.” is changed to “This means that a
few vertices with very high degrees dominate the edge count, and the distribution
of Sn(t) diverges. Thus, if γ > 1/2, we need to consider a different scaling of the
edge count to obtain a nontrivial limit, and we introduce

Sn( · ) := n−γ(Sn( · )− E[Sn( · )]).

Note that the symbol Sn( · ) is reused here with different scaling from the one
in Theorem D.2.4. As the two scalings are used in different contexts, namely
the thin-tailed case and the heavy-tailed case, they are used in separate sections
of the paper, and we believe that there is no risk of confusion. As it is shown
in Theorem D.2.6 if γ > 1/2, the finite-dimensional distributions of Sn( · ) are
heavy-tailed, and thus the limiting process is not a Gaussian process.”.

• In Section D.2, at the definition of the spatial and temporal parts of points,
the text “p := (x, u, b, ℓ) ∈ P, we define the spatial part” is changed to “p :=
(x, u, b, ℓ) ∈ S × T, we define the spatial part”. Similarly, the text “for a point
p′ := (z, w, r) ∈ P ′, we define its spatial part” is changed to “for a point
p′ := (z, w, r) ∈ S× R, we define its spatial part”.

• In the proof of Lemma D.10.1, the last sentence of the proof is changed from
“Thus, for some constant c− > 0, the covariance function of S−

n (t) is given by”
to “Thus, for some constant c− > 0, the limiting covariance function of S−

n (t) is
given by”.

• In Section D.11, the text “In the next proof, we show that the size of the spatial
neighborhoods of the points converges to a measure, which is done by showing
convergence to a distribution function.” is changed to “In the next proof, we show
that nP(n−γ |Ns(Ps)| ∈ [ · ,∞)) converges to a measure in the vague topology as
n→∞.”.

• The below display in the paragraph Step 3 in Section D.7 was changed from

S(3),±
n,ε ( · ) :=

∑
P∈P∩(S⩽1/(εn)

n ×T0⩽)

E[deg±(P ; · ) | P ] =
∑

P∈P∩(S⩽1/(εn)
n ×T0⩽)

|N±(P ; · )| and

S
(2),±
n ( · ) := n−γ(

S(3),±
n,ε ( · )− E[S(3),±

n,ε ( · )]
)
.
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to

S(3),±
n,ε ( · ) :=

∑
P∈P∩(S⩽1/(εn)

n ×T0⩽)

E[deg±(P ; · ) | P ] =
∑

P∈P∩(S⩽1/(εn)
n ×T0⩽)

|N±(P ; · )| and

S
(3),±
n ( · ) := n−γ(

S(3),±
n,ε ( · )− E[S(3),±

n,ε ( · )]
)
.

• In the minus case of the proof of Proposition D.7.5, the text “The set of points
(Di, Li) is a PPP(Leb ⊗ PL), and we transform the point process P into a
point process P− on S × T with intensity measure Leb ⊗ PL by replacing the
coordinates {Bi} with {Di}. Note that the total intensity measure of the point
process P− is given µ as it was defined in Section D.2.” was changed to “The
set of points {(Di, Li)} is a Poisson point process PPP(Leb⊗ PL) on T, and we
transform the point process P into a point process P− on S× T with intensity
measure µ by replacing the coordinates {Bi} with {Di}.”

• In the minus case of the proof of Proposition D.7.5, from the original display

E
[ ∑
P∈P−∩(S1/(εn)⩽

n ×T)

U−γL1{D ∈ [0, t]}
]

=
∫
S1/(εn)⩽

n ×T
u−γℓ1{w ∈ [0, t]}dx dudbPL(dℓ)

=
∫ n

0

∫ 1

1/(εn)

∫ t

0

∫ ∞

0
u−γℓPL(dℓ) dw dudx = c̃nt

1− γ
(
1− (εn)−(1−γ)).

c̃ is removed, resulting in

E
[ ∑
P∈P−∩(S1/(εn)⩽

n ×T)

U−γL1{D ∈ [0, t]}
]

=
∫
S1/(εn)⩽

n ×T
u−γℓ1{w ∈ [0, t]}dx dudbPL(dℓ)

=
∫ n

0

∫ 1

1/(εn)

∫ t

0

∫ ∞

0
u−γℓPL(dℓ) dw dudx = nt

1− γ
(
1− (εn)−(1−γ)).

• In the plus case of the proof of Proposition D.7.5, the nγ and n−γ scaling factors
were missing in several places, which are now added.
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