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Introduction

Curse of Dimensionality
increasing dimensions
exponential growth of data
space
sparse data

Limitations of t-SNE
time complexity: O(n2)

global data structure is not
captured

Goal
preserve nonlinear relationships
preserve global and local information
higher flexibility
better scalabity
robustness to noise
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Main Idea

Goal
embed data points in low-dimensional space
preserve local and global data structure
similar data points in high-dimensional space remain close to
each other
distance of clusters of points should be preserved

Main Steps
assume that the data is uniformly distributed on a
high-dimensional manifold
learn the manifold using Riemannian metrics
embed the points in a low-dimensional Euclidean space
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Topological Space

Topological Space

(X , τ) : τ ⊆ P(X )

∅ ∈ τ , X ∈ τ

Uα ∈ τ =⇒
⋃

α∈I Uα ∈ τ

Ui ∈ τ =⇒
⋂n

i=1 Ui ∈ τ

Examples
trivial topology
discrete space
Euclidean space
simplicial complex
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Manifold

Manifold
topological space
second countable
Hausdorff
locally homeomorphic to Rn
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Is this a Manifold?

(a) yes (b) yes (c) no

(d) yes (e) yes (f) yes

(g) no (h) yes (i) yes
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UMAP Assumption

Assumption: data is uniformly distributed on a manifold

Given the data, how to approximate the manifold?
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Simplicial Complex

simplicial complex: discrete topological space
idea: approximate the manifold with a simplicial complex

Simplicial Complex

(V , κ)

V ̸= ∅, |V | < ∞
κ ⊆ P(V )

v ∈ V =⇒ {v} ∈ κ

τ ∈ κ, σ ⊂ τ =⇒ σ ∈ κ
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Nerve

How to create a simplicial complex from a manifold?

Cover
C = {Uα ⊆ X : α ∈ A}
X =

⋃
α∈A Uα

Nerve
{Uα ⊆ X : α ∈ A} open
cover of X
N(Uα): simplicial complex
i-simplices: σ ⊆ A

Supp(σ) :=
⋂

α∈σ Uα ̸= ∅
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Homotopy Equivalence

Homotopy
X ,Y topological spaces
f , g ∈ C 0 : X → Y

Θ ∈ C 0 : X × [0, 1] → Y

Θ(x , 0) = f (x)
Θ(x , 1) = g(x)

Homotopy Equivalence
X ,Y topological spaces
f ∈ C 0 : X → Y ;
g ∈ C 0 : Y → X

g ◦ f homotopic to idX ;
f ◦ g homotopic to idY
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Nerve Theorem

Nerve Theorem

X topological space
{Uα ⊆ X : α ∈ A} open cover
σ ∈ N(Uα) =⇒ Supp(σ)
homotopy equivalent to a point

=⇒

|N(Uα)|
homotopy
equivalent
to X

X |N(Uα)|
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Back to the Data

goal: build a simplicial complex representing the manifold
idea: cover the manifold with ε-balls
Bε(p) = {q ∈ M : d(p, q) < ε}
two options: Čech complex, Vietoris–Rips complex
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Čech Complex

Čech Complex
simplices: set of points such
that the covering ε-balls have a
nonempty intersection
σ = {pi ∈ M :

⋂
i Bε(pi ) ̸= ∅}

Peter Juhasz Uniform Manifold Approximation and Projection



Theory Remarks Examples Manifolds Approximation Projection

Vietoris–Rips Complex

Vietoris–Rips Complex
simplices: set of points such
that all pairs are within 2ε
distance of each other
σ = {pi , pj ∈ M : pj ∈ B2ε(pi )}
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Uneven Data Distribution

fine if data is uniformly distributed, but in reality:

Idea: find metric such that the data is uniform
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Differentiable Manifolds

Chart
(U, ϕ); U ⊆ M open
ϕ : U → Rn

ϕ homeomorphism

Differentiable Manifold
domain of charts can
overlap
transition functions: maps
between overlapping charts
transition functions must be
differentiable
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Riemannian Metric

Tangent Space

γ(t) ∈ C 0: R → M

p ∈ γ(t)

tangent vector: vp := γ̇(p)

TpM =
Span ({tangent vectors})

Riemannian Metric
find a basis for each tangent
space
assign inner product to each
tangent space

Tp(M)
a

p

Theorem
every differentialble
manifold admits a
Riemannian metric
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Local Notion of Distance

local notion of distance
for each point
in local metric, unit balls
contain k nearest
neighbors
choose a number of
neighbors instead of the
distance
k small: local metric,
higher variance
k large: global metric,
higher bias
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High-Dimensional Distance Metrics

not only the Euclidean distance can be used (and scaled)
we can choose different metrics as well

Some Metrics
Euclidean metric: d(pi , pj) =

√∑m
k=1(pik − pjk)2

Chebyshev metric: d(pi , pj) = maxk |pik − pjk |

Minkowski metric: d(pi , pj) = (
∑m

k=1 |pik − pjk |r )1/r

cosine metric: d(pi , pj) = 1 − pi ·pj
||pi ||2 ||pj ||2

Mahalanobis metric: d(pi , pj) =
√

(pi − pj)TM(pi − pj)
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Incompatible Local Metrics

Incompatible local metrics

pi pj

pk

Which edges should be included?

Solution: fuzzy simplices
based on the local metric at
point pi , assign a fuzzy
value wd

σ|i to the edges σ

create fuzzy edges from
each point

take the fuzzy union of all
edges (simplicial complexes)
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Exponential Kernel

Fuzzy values are determined by the exponential kernel

wd
•|i = exp

(
−di (p•)−dnn|i

δi

)

pi pj1 pj2 pj3

1

di (•)

Local Metric
di (•): distance in local metric
unit ball radius: kernel shifted by
distance to nearest neighbor
local connectedness assumption:
no isolated points (nearest
neighbor has fuzzy value 1)

Bandwidth
bandwidth δi depends
on the point
higher δi : points
further away contribute
more
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Effect of Bandwidth

lower δi : further points have lower fuzzy value

exp
(
−di (p)−dnn|i

δi

)

pi pj1 pj2 pj3

1

di (p)

higher δi : further points have higher fuzzy value

exp
(
−di (p)−dnn|i

δi

)

pi pj1 pj2 pj3

1

di (p)
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Number of Neighbors

bandwidth is adapted to the density: δi is smaller in denser
parts of the data space

δi determines the number of neighbors Nn(pi ) of point pi in
the local metric

log2(Nn(pi )) :=
∑
j

wd
j |i

δi is tuned Nn(pi ) matches a predefined value Nn

fuzzy value of nearest neighbors is always 1

algorithm for nearest neighbors: Nearest Neighbor Descent
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Fuzzy Union

Incompatible local metrics: asymmetrical fuzzy values
Fuzzy union: symmetrize fuzzy values

Example
wd
j |i , w

d
j |i : fuzzy values of pj ,

pi with respect to the local
metric of pi , pj
edges: combine local
metrics by
wd
ij := wd

j |i +wd
i |j −wd

j |i ·w
d
i |j

wd
ij : symmetrical;

probability that the edge
exists from at least in one
of the points

wd
j |i

pi pj

wd
i |j

pj pi
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Fuzzy Topology

weight edges with a
function of the length in
local metric

fuzzy value: certainty
that a point is in a ball of
a given radius

union of fuzzy complexes:
simplicial complex

mathematical foundation:
UMAP Adjunction
Theorem
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Exercise – Fuzzy Simplicial Complex

create a fuzzy simplicial complex using the Chebyshev metric

X =

 1 1
1 1 + ln(2)

1 + ln(4) 1

 δ =

1
1
1


1 distance matrix DX

2 fuzzy values wd
j |i

(exponential kernel)
3 fuzzy union wd

ij

DX =

 0 ln(2) ln(4)
ln(2) 0 ln(4)
ln(4) ln(4) 0

 dnn =

ln(2)ln(2)
ln(4)



wd
j |i =

1
2

0 2 1
2 0 1
2 2 0

 wd
ij =

0 1 1
1 0 1
1 1 0


Interesting: each edge surely exists. But why?
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Projection

Goal: embed simplicial complex into
a low-dimensional Euclidean space

Tasks Known Question
Approximation positions manifold, metric

Projection manifold, metric positions

Idea: initialize a fuzzy simplicial complex
in the embedding space; minimize cross entropy
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Initializing Embedding Positions

Initialization of
Embeddings

set the dimension of
the embedding space

consider only edges

create a weighted
graph of k nearest
neighbors

initialize the graph
using spectral
embedding

Spectral Embedding
weight matrix of edges: Aij = wd

ij

diagonal degree matrix:
Dii =

∑
j Aij

graph Laplacian: L = D − A

calculate the eigenvalue
decomposition of L: L = UΛUT

consider the eigenvectors
corresponding to the smallest
nonzero eigenvalues
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Exercise – Spectral Embedding

p3

p1 p2

0.
2

0.5

A =
1
10

0 5 2
5 0 0
2 0 0

 D =
1
10

7 0 0
0 5 0
0 0 2



L =
1
10

 7 −5 −2
−5 5 0
−2 0 2



Λ ≈

0 0 0
0 0.26 0
0 0 1.14

 U ≈

1 −0.32 −4.68
1 −0.68 3.68
1 1 1


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Fuzzy Values in the Embedded Simplicial Complex

Embeddings
low-dimensional embedding of pi : qi

typically qi ∈ R2 or R3

Fuzzy Values
similarities of embeddings: based on t-distribution

w e
ij := w e(qi , qj) :=

1

1 + α||qj − qi ||2β2
(i ̸= j) wii := 0

α: lower values increase the spread of embeddings
β: higher values increase the minimum distance between
embeddings
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Effect of Parameters

x

fuzzy values as a function
distance has fat tails
fuzzy values are higher
further away
embeddings spread out

Gaussian curve
base case
decreased α

increased β
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Objective

Objective
goal: learn positions of embeddings qi

fuzzy values w e of embeddings qi should reflect fuzzy values
wd of the data pi

minimize "distance" between w e and wd

Idea
consider the cross entropy H(w e ,wd)

minimize H(w e ,wd) by adjusting the embeddings
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Cross Entropy

Definition
cross entropy
measure of dissimilarity between distributions
expectation of logarithmic probabilities of other distribution:

H(P,Q) = EP [ln(1/Q)] = −
∑
x∈X

P(x) ln(Q(x))

Relationships
Kullback-Leibler Divergence: DKL(P||Q)

cross entropy: H(P,Q) = H(P) + DKL(P||Q)

Properties
H(P,Q) ≥ 0; H(P,Q) = 0 ⇐⇒ P = Q

H(P,Q) ̸= H(Q,P)
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Cross Entropy in Our Case

fuzzy simplicial complex: each edge (simplex) σ is assigned a
weight
Bernoulli distribution: σ exists with probability wσ

wd
σ in the simplicial complex for the data

w e
σ in the simplicial complex for the embedding

H(wd ,w e) =
∑
i ̸=j

(
wd
ij ln

(
wd
ij

w e
ij

)
︸ ︷︷ ︸

term for i ↔ j exists
attractive force

+
(
1 − wd

ij

)
ln

(
1 − wd

ij

1 − w e
ij

)
︸ ︷︷ ︸
term for i ↔ j does not exist

repulsive force

)

force-directed graph layout: minimizing H(wd ,w e) by
adjusting the embeddings

Peter Juhasz Uniform Manifold Approximation and Projection



Theory Remarks Examples Manifolds Approximation Projection

Stochastic Gradient Descent Optimization

Cross Entropy
minimize H(wd ,w e)

stochastic gradient descent:
iteratively update embeddings
move similar (dissimilar) points
closer together (further apart)

Gradient
iteratively update
embeddings with
learning rate α:

q
(t+i)
i := q

(t)
i − α

∂DKL

∂q
(t)
i

Simplified Algorithm
choose an embedding qi uniformly randomly
attractive force: choose qj ,a from its neighborhood (probability
∼ fuzzy value)
repulsive force: choose qj ,r uniformly randomly from points
not in the neighborhood
balance attractive and repulsive forces using cost function
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Steps of UMAP

Data Points
build data matrix
calculate fuzzy values

find δi for each point
symmetrize fuzzy values

X

wd
j |i = exp

(
−(dj |i − dnn|i )/δi )

)
log2(Nn) =

∑
j wj |i

wd
ij = wi |j + wj |i − wi |j · wj |i

Embeddings
initialize embeddings
calculate fuzzy values

Yinit

w e
ij ∼ 1/(1 + α||yj − yi ||2β2 )

Cross Entropy
consider cross entropy

stochastic gradient descent

H =
∑

wd
ij ln(w

d
ij /w

e
ij )

+(1−wd
ij ) ln((1−wd

ij )/(1−w e
ij ))

yi := yi − α ∂H
∂yi
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Main UMAP Parameters

Nearest Neighbors
k : number of nearest
neighbors
adjusts the bandwidth
k small: local metric
k large: global metric

Minimum Distance
adjusts how close
embeddings can be
low values: clumpier
embeddings
high values: embeddings
spread out more

Number of Components
dimension of embedding
space
2 or 3: visualization
> 3: density based
clustering

Distance Metric
metric for high-dimensional
space
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Some Remarks

Supervised Learning
create embeddings from
training set, then embed
new, unseen data points
labels: separate metric
space; use fuzzy intersection
to combine complexes

Combining UMAP Models
if two UMAP models
operate on the same data
use fuzzy topology to
combine fuzzy simplicial
complexes

Aligned UMAP
it is possible to align two
UMAP embeddings
optimize both embeddings
in parallel
apply constraint to shared
points

Non-Euclidean Embeddings
it is possible to embed data
in non-Euclidean spaces
set the embedding space
dimension
use a different metric for
the embedding space
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Limitations

Nonuniform Data
may not perform well on
non-uniform density

Transformation Bias
data might not lie on a
low-dimensional manifold

Limited Interpretability
low-dimensional
embeddings are hard to
interpret

Sensitivity
sensitive to choice of
hyperparameters
interactive tuning is
required
wrong choice may lead to
false findings
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Quiz – t-SNE, UMAP, or Both?

Which one . . .

is more scaleable?
preserves more of the global structure?
should we consider for larger data sets?
interprets distances of clusters better?
is sensitive to the choice of parameters?
runs in a reproduceable manner?
uses a force-directed graph layout?
is more mathematically justified?
is a nonlinear algorithm?

UMAP
UMAP
UMAP
UMAP
both
t-SNE
UMAP
UMAP
both
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Interactive Examples

Understanding UMAP

Tensorflow Embedding Projector

UMAP Explorer

Visualizing UMAP

Peter Juhasz Uniform Manifold Approximation and Projection

https://pair-code.github.io/understanding-umap/
https://distill.pub/2016/misread-tsne/
https://grantcuster.github.io/umap-explorer/
https://fernando-lunap-streamlit-apps-umap-dashboard-fqce9m.streamlit.app/
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UMAP in Python & R

load
library

load
dataset

create
UMAP
object

fit
model

Python
import umap.umap_ as umap

data: npt.NDArray = . . .

model = umap.UMAP(
n_neighbors=5,
min_dist=0.3, . . . )

embedding =
model.fit_transform(data)

R
library(umap)

data <- . . .

umap(data)
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R Examples

R Examples
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Summary

data points:
learn manifold
fuzzy simplicial

complex

embeddings:
spectral

embedding
∼ t distribution

minimize
cross entropy:

stochastic
gradient descent
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Q & A
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