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Introduction

Curse of Dimensionality Limitations of t-SNE
@ increasing dimensions e time complexity: O(n?)
@ exponential growth of data o global data structure is not
space captured

@ sparse data

Goal
preserve nonlinear relationships

preserve global and local information

°
°

@ higher flexibility
o better scalabity
°

robustness to noise
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Goal
@ embed data points in low-dimensional space
@ preserve local and global data structure

@ similar data points in high-dimensional space remain close to
each other

@ distance of clusters of points should be preserved

Main Steps

@ assume that the data is uniformly distributed on a
high-dimensional manifold

@ learn the manifold using Riemannian metrics

@ embed the points in a low-dimensional Euclidean space
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Theory Manifolds Approximation Projection
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Theory Manifolds Approximation Projection

Topological Space

Topological Space Examples

e (X,7): 7 CP(X) e trivial topology
eer, Xer o discrete space

o UpneT= Uy Ua €T @ Euclidean space

e Uer= N U¢er o simplicial complex

O O
@9y GO
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Manifolds Approximation Projection

Manifold

Manifold

@ topological space

@ second countable
o Hausdorff <--- Bt

@ locally homeomorphic to R"”

u v
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Theory Manifolds Approximation Projection

Is this a Manifold?

(e) yes (f) yes

) yes (b) yes (c) no
) yes

(h) yes (i) yes
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Theory Manifolds Approximation Projection

UMAP Assumption

Assumption: data is uniformly distributed on a manifold

Given the data, how to approximate the manifold?
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Theory Manifolds Approximation Projection

Simplicial Complex

@ simplicial complex: discrete topological space
@ idea: approximate the manifold with a simplicial complex

Simplicial Complex

o (V,k)
V#0, V| <oo
k CP(V)
veV={v}lexr
TEK OCCT=0ERK
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Manifolds Approximation Projection

How to create a simplicial complex from a manifold?

o C={U,CX:acA}
OXZUQEAUQ

o {Uy C X :«€ A} open .

cover of X \

e N(U,): simplicial complex
@ i-simplices: 0 C A

o Supp(0) :=Nyey Ua # 0 ~—
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Theory Manifolds Approximation Projection

Homotopy Equivalence

Homotopy Eguivalence

@ X, Y topological spaces @ X, Y topological spaces
0o f,gcCl:X—=Y o feCl: XY,
00eCl:Xx[0,1]—Y geCtl: Yy o X
e O(x,0) = f(x) @ g o f homotopic to idx;
O(x,1) = g(x) f o g homotopic to idy
G
/’—x
X181} > ©
6 —_—
Xxf03 < >

\F/OQ
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Theory Manifolds Approximation Projection

Nerve Theorem

Nerve Theorem

@ X topological space IN(Uy)|
o {Uy € X : € A} open cover homotopy
e o
o o € N(U,) = Supp(o) equivalent
homotopy equivalent to a point to X
-

X IN(Ua)
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Theory Manifolds Approximation Projection

Back to the Data

@ goal: build a simplicial complex representing the manifold
o idea: cover the manifold with e-balls
B.(p) ={q € M:d(p,q) <e}

e two options: Cech complex, Vietoris—Rips complex
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Theory Manifolds Approximation Projection

Cech Complex

Cech Complex

@ simplices: set of points such
that the covering e-balls have a
nonempty intersection

o o ={picM:;B(p) # 0}
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Theory

Vietoris—Rips Complex

Manifolds Approximation Projection

Vietoris—Rips Complex

@ simplices: set of points such "
that all pairs are within 2¢
distance of each other

e 0= {p,',pj eM:pje Bo.(pi)}
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Theory Manifolds Approximation Projection

&

fine if data is uniformly distributed, but in reality:

- L, @

A £4d @V

Idea: find metric such that the data is uniform

Uneven Data Distribution
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Theory Manifolds Approximation Projection

Differentiable Manifolds

e (U,¢); UC M open
e p:U—R"
@ ¢ homeomorphism

Differentiable Manifold

@ domain of charts can
overlap

@ transition functions: maps
between overlapping charts

@ transition functions must be

differentiable R" R"
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Theory Manifolds Approximation Projection

Riemannian Metric

Tangent Space
o y(t) e C: R— M
° pEn(t)
@ tangent vector: v, := (p)
o ToM=

Span ({tangent vectors})

> find a basis for each tangent

space o every differentialble
@ assign inner product to each manifold admits a
tangent space Riemannian metric
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Theory Manifolds Approximation Projection

Local Notion of Distance

@ local notion of distance
for each point

@ in local metric, unit balls
contain k nearest
neighbors

@ choose a number of
neighbors instead of the
distance

@ k small: local metric,
higher variance
k large: global metric,
higher bias
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Theory Manifolds Approximation Projection

High-Dimensional Distance Metrics

@ not only the Euclidean distance can be used (and scaled)

@ we can choose different metrics as well

Some Metrics

o Euclidean metric: d(pj, pj) \/Zk 1(Pik — Pjk)?
o Chebyshev metric: d(pi, pj) = maxk |pik — pj|

o Minkowski metric: d(pi, pj) = (Zk 1 |pik — Pjk|" )

@ cosine metric: d(p;,pj) =1 — m

o Mahalanobis metric: d(pi, p;) = \/(pi — p;) T M(pi — p;)
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Theory Manifolds Approximation Projection

Incompatible Local Metrics

Incompatible local metrics Solution: fuzzy simplices
JUCELEEINN @ based on the local metric at
L d . -
R “\\ point p;, assign a fuzzy
R . value w9 . to the edges o
oli
l’ - - !
' *‘— .~~ ‘I
e o A @ create fuzzy edges from
4 .
u Pr ..k each point
H ° 1re
|“ Pi ] \~f ,' .
X% K Pj. o take the fuzzy union of all
S .’ -’ edges (simplicial complexes)
§.§*~‘! “ g p p

- -

Which edges should be included?
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Theory Manifolds Approximation Projection

Exponential Kernel

Fuzzy values are determined by the exponential kernel

‘ ‘ ! d,-(o)
Pi Pjy Pj> Pjs
Local Metric Bandwidth
o d;(e): distance in local metric @ bandwidth §; depends
e unit ball radius: kernel shifted by on the point
distance to nearest neighbor @ higher ¢;: points
@ local connectedness assumption: further away contribute
no isolated points (nearest more

neighbor has fuzzy value 1)
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Theory Manifolds Approximation Projection

Effect of Bandwidth

o lower 0;: further points have lower fuzzy value

1 77777 di(p)_dnn|i
exp (—T
B \ . d(p)
Pi Pi Pj Pjs
@ higher ¢;: further points have higher fuzzy value

1H--- exp (_M)

i

di(p)

Pi Pi Pj» Pjs
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Theory Manifolds Approximation Projection

Number of Neighbors

@ bandwidth is adapted to the density: ¢; is smaller in denser
parts of the data space
@ J; determines the number of neighbors N,(p;) of point p; in
the local metric
loga(Na(pi)) = ) w
J
@ 0; is tuned N,(p;) matches a predefined value N,
o fuzzy value of nearest neighbors is always 1
@ algorithm for nearest neighbors: Nearest Neighbor Descent
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Theory Manifolds Approximation Projection

Fuzzy Union

Incompatible local metrics: asymmetrical fuzzy values
Fuzzy union: symmetrize fuzzy values

Example

d
Jli J|’
pi with respect to the local

metric of p;, p;

o w' fuzzy values of pj,

@ edges: combine local

metrics by
wi = Il v, \J WJ'(III' ' Wi‘ljj

° W,j-’: symmetrical, J
probability that the edge Wilj
exists from at least in one
of the points bj b,-

Peter Juhasz Uniform Manifold Approximation and Projection



Theory Manifolds Approximation Projection

Fuzzy Topology

@ weight edges with a
function of the length in -
local metric .

o fuzzy value: certainty
that a point is in a ball of
a given radius .

@ union of fuzzy complexes: .
simplicial complex : .

@ mathematical foundation: :
UMAP Adjunction
Theorem
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Theory Manifolds Approximation Projection

Exercise — Fuzzy Simplicial Complex

create a fuzzy simplicial complex using the Chebyshev metric

@ distance matrix Dx

1 1 1 @ fuzzy values Wﬁi
X = 1 1+In(2)| 0= |1 (exponential kernel)
© fuzzy union wj;
0 In(2) In(4) In(2)
Dx = |In(2) 0 In(4) dnn = [In(2)
In(4) In(4) O In(4)
1 0 21 011
wii=512 01 wi=1[101
2 20 110
Interesting: each edge surely exists. But why?
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Manifolds Approximation Projection

Projection

Goal: embed simplicial complex into
a low-dimensional Euclidean space

Tasks ‘ Known Question
Approximation positions manifold, metric
Projection manifold, metric positions

Idea: initialize a fuzzy simplicial complex
in the embedding space; minimize cross entropy
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Theory Manifolds Approximation Projection

Initializing Embedding Positions

Initialization of Spectral Embedding

Embeddings o weight matrix of edges: Aj;; = W,-j-i

@ set the dimension of di | d .
e embedding soace o diagonal degree matrix:
' &P Dii =32 Ajj

o consider only edges e graph Laplacian: L=D — A

@ create a weighted
graph of k nearest

neighbors

@ calculate the eigenvalue
decomposition of L: L = UAUT

@ consider the eigenvectors
corresponding to the smallest
nonzero eigenvalues

o initialize the graph
using spectral
embedding
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Theory

Exercise — Spectral Embedding

Manifolds Approximation Projection

p3
a 1
\ A=
© 10
P1 0.5 P2
7
L= 1—10 -5
-2
0 0 0
A= [0 026 O U
0O 0 1.14

Peter Juhasz

0 5 2] L [T 0o0
500/ D=:1050
2 0 0 002
—5 2]

5 0

0 2]

1 —032 —4.68
~ |1 —068 3.68

11 1
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Theory Manifolds Approximation Projection

Fuzzy Values in the Embedded Simplicial Complex

Embeddings
@ low-dimensional embedding of p;: g;
o typically g; € R? or R3

Fuzzy Values

@ similarities of embeddings: based on t-distribution

1
2
1+ allg; — qil 3

wi = w®(qi, qj) := (i #J) wii =0

o «: lower values increase the spread of embeddings

@ f3: higher values increase the minimum distance between
embeddings
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Theory Manifolds Approximation Projection

Effect of Parameters

o fuzzy values as a function

X X @ Gaussian curve
distance has fat tails

_ @ base case
o fuzzy values are higher

further away @ decreased «

e embeddings spread out @ increased [
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Manifolds Approximation Projection

Objective

Objective
@ goal: learn positions of embeddings g;

o fuzzy values w® of embeddings g; should reflect fuzzy values
w9 of the data p;

@ minimize "distance" between w® and w9

Idea
o consider the cross entropy H(w®, w?)

o minimize H(w®, w?) by adjusting the embeddings
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Theory Manifolds Approximation Projection

Cross Entropy

Definition
@ cross entropy
@ measure of dissimilarity between distributions

@ expectation of logarithmic probabilities of other distribution:

H(P,Q) =Ep[In(1/Q)] = = > P(x) In(Q(x))
xeX
Relationships

o Kullback-Leibler Divergence: Dk (P||Q)
e cross entropy: H(P, Q) = H(P) + Dk.(P||Q)

Properties
o H(P,Q)>0; H(P,Q)=0+=P=0Q
° H(P,Q) # H(Q,P)
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Theory Manifolds Approximation Projection

Cross Entropy in Our Case

o fuzzy simplicial complex: each edge (simplex) o is assigned a
weight
@ Bernoulli distribution: o exists with probability w,

o w? in the simplicial complex for the data
o w¢ in the simplicial complex for the embedding

d d
w? 1— wt
i i
H(w9, we) = E widln | 2| +(1—-wd)In|—%
’ Y we y 1—ws
£ 1 )
i#] y v/,
term for i <> j exists  term for i <> j does not exist
attractive force repulsive force

o force-directed graph layout: minimizing H(w9, w®) by
adjusting the embeddings
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Theory Manifolds Approximation Projection

Stochastic Gradient Descent Optimization

Cross Entropy Gradient
e minimize H(w9, we) e iteratively update
embeddings with

@ stochastic gradient descent:
learning rate a:

iteratively update embeddings
@ move similar (dissimilar) points (t+) (t) ODk1
closer together (further apart) 9i =49 8q(t)

i

Simplified Algorithm
@ choose an embedding g; uniformly randomly

@ attractive force: choose g; , from its neighborhood (probability
~ fuzzy value)

o repulsive force: choose g; , uniformly randomly from points
not in the neighborhood

@ balance attractive and repulsive forces using cost function
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Theory Manifolds Approximation Projection

Steps of UMAP

Data Points
@ build data matrix o X
o calculate fuzzy values ° wjflll. = exp (—(dj‘,- - d,,n|,-)/5,-))

e find §; for each point o logy(Nn) =3, wy;
o symmetrize fuzzy values ° W,-j-’ = Wj|j + Wi — wjjj - Wj);
Embeddings

@ initialize embeddings

Yinit

o calculate fuzzy values wi ~1/(1+ally; - Yngﬂ)

Cross Entropy

@ consider cross entropy e H=Y" W,?' In(w,j-]/wij.)
+(1- Wg) In((1- W,j-’)/(l —wf))
@ stochastic gradient descent 0y =y —« g}’:’
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Theory Manifolds Approximation Projection

Main UMAP Parameters

Nearest Neighbors Minimum Distance
@ k: number of nearest @ adjusts how close
neighbors embeddings can be
@ adjusts the bandwidth @ low values: clumpier
@ k small: local metric embeddings
o k large: global metric @ high values: embeddings

spread out more

Number of Components Distance Metric
e dimension of embedding @ metric for high-dimensional
space space

@ 2 or 3: visualization

@ > 3: density based
clustering
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Remarks Extensions & Limitations Quiz
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Remarks

Some Remarks

Extensions & Limitations Quiz

Supervised Learning

@ create embeddings from
training set, then embed
new, unseen data points

o labels: separate metric
space; use fuzzy intersection
to combine complexes

Aligned UMAP

@ it is possible to align two
UMAP embeddings

@ optimize both embeddings
in parallel

@ apply constraint to shared
points

Combining UMAP Models

o if two UMAP models
operate on the same data

o use fuzzy topology to
combine fuzzy simplicial
complexes

Non-Euclidean Embeddings

@ it is possible to embed data
in non-Euclidean spaces

@ set the embedding space
dimension

@ use a different metric for
the embedding space
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Remarks Extensions & Limitations Quiz

Limitations

Nonuniform Data Transformation Bias
@ may not perform well on o data might not lie on a
non-uniform density low-dimensional manifold
Limited Interpretability Sensitivity
@ low-dimensional @ sensitive to choice of
embeddings are hard to hyperparameters
interpret @ interactive tuning is
required

@ wrong choice may lead to
false findings
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Remarks Extensions & Limitations Quiz

— t-SNE, UMAP, or Both?

Which one ...

@ is more scaleable? o UMAP
@ preserves more of the global structure? o UMAP
@ should we consider for larger data sets? o UMAP
@ interprets distances of clusters better? o UMAP
@ is sensitive to the choice of parameters? e both

@ runs in a reproduceable manner? o t-SNE
@ uses a force-directed graph layout? o UMAP
@ is more mathematically justified? o UMAP
@ is a nonlinear algorithm? @ both
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Examples Interactive Parameter Tuning Scripts

Interactive Examples

e Understanding UMAP
o Tensorflow Embedding Projector
o UMAP Explorer

o Visualizing UMAP
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https://pair-code.github.io/understanding-umap/
https://distill.pub/2016/misread-tsne/
https://grantcuster.github.io/umap-explorer/
https://fernando-lunap-streamlit-apps-umap-dashboard-fqce9m.streamlit.app/

Examples Interactive Parameter Tuning Scripts

UMAP in Python & R

Python R
o load import umap.umap__ as umap library(umap)
library
e load data: npt.NDArray = ... data <- ...
dataset

@ create model = umap.UMAP(

UMAP n_neighbors=5,
object min_dist=0.3, ...)

o fit embedding = umap(data)
model model.fit_transform(data)
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Examples Interactive Parameter Tuning Scripts

R Examples

R Examples
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Summary

data points:
learn manifold
fuzzy simplicial
complex

minimize

cross entropy:
stochastic

gradient descent

embeddings:
spectral

embedding

~ t distribution
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