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Motivation

Complex Systems

Simple graphs: information loss
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Dynamic Hypergraph Model

Model

Goal
develop a network model
study its scaling limits

Model
bipartite graph: vertices,
hyperedges
representation: two Poisson
point processes P and P ′

Vertices: P
position: X ∈ R
mark: U ∈ [0, 1]
birth time: B ∈ R
lifetime: L ∈ [0,∞)

Hyperedges: P ′

position: Y ∈ R
mark: V ∈ [0, 1]
interaction time: I ∈ R
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Dynamic Hypergraph Model

Dynamic Random Connection Hypergraph Model

vertices

hyperedges

possible
bipartite
connections

position

mark

(a) Spatial condition

position

time

(b) Temporal condition
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Dynamic Hypergraph Model

Spatial Connection Condition

P = (X ,U,B, L) ∈ P
P ′ = (Y ,V , I ) ∈ P ′

spatial condition: |X − Y | ⩽ U−γ V−γ′
γ, γ′ ∈ (0, 1)

|x − y | ⩽ u−γ v−γ′

connecting P ′-points

x

(x ,u)

1

position (y)

mark (v)
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Dynamic Hypergraph Model

Temporal Connection Condition

P = (X ,U,B, L) ∈ P
P ′ = (Y ,V , I ) ∈ P ′

temporal condition: B ⩽ I ⩽ B + L

hyperedgesvertices

position

time
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Edge Counts

Edge counts

State space:

S := R× [0, 1]
T := R× R+

}
=⇒

{
P ⊆ S× T
P ′ ⊆ S× R

Degree of P := (X ,U,B, L) ∈ P:

deg(P; t) :=
∑

(Y ,V ,I )∈P ′

1
{
|X − Y | ⩽ U−γV−γ′}

×1
{
B ⩽ I ⩽ t ⩽ B + L

}
Edge count

Sn( · ) :=
∑
P∈P

deg(P; · )1{X ∈ [0, n]}
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Functional Convergence of Edge Counts

Finite Variance Domain

If γ < 1/2, then Var(Sn(t)) < ∞ for all t ∈ [0, 1], and the
univariate CLT holds:

Sn(t) := n−1/2(Sn(t)− E[Sn(t)])
d−→ N (0, σ2)

G : Gaussian process

Cov(G (t1),G (t2)) = (c1 + c2|t1 − t2|) exp(−µ|t1 − t2|)

Theorem (Hirsch, Jahnel, J., 2025)

If γ, γ′ < 1/4, then the edge count process Sn( · ) converges weakly
to G ( · ) as n → ∞.
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Functional Convergence of Edge Counts

Functional Convergence of Edge Counts

If γ > 1/2, then Var(Sn(t)) = ∞ for all t ∈ [0, 1], and the
univariate SLT holds:

Sn(t) := n−γ(Sn(t)− E[Sn(t)])
d−→ S(1/γ)

time

S
(2)
n
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Functional Convergence of Edge Counts

Functional Stable Limit Theorem

ν([ε,∞)) := cε−1/γ : Lévy measure on J := [0,∞)

P∞ := PRM(J×T): with intensity measure ν×LebR×Exp(1)

S∞( · ) := lim
ε↓0

( ∑
(J,B,L)∈P∞

J 1{J ⩾ ε}( · − B)1{ · ∈ [B,B + L]}

− c ′ ε−(1/γ−1)
)

Theorem (Hirsch, Jahnel, J., 2025)

If γ > 1/2 and γ′ < 1/4, then S∞( · ) ∈ D([0, 1],R) exists, and the
edge count process Sn( · ) converges weakly to S∞( · ) in the
Skorokhod space D([0, 1],R) as n → ∞.
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