Random Connection Hypergraphs

Morten Brun, Christian Hirsch, Peter Juhasz, Moritz Otto

peter.juhasz@math.au.dk

Collaboration Networks

- Higher-order networks describe group interactions.
- Goal: understand real-world higher-order networks by higherorder network models.
- The models could shed light on the high-level structure of scientific collaborations.

Random Connection Hypergraph Model

• Hypergraph model: bipartite graph with two marked Poisson point processes \mathcal{P} and \mathcal{P}' on $\mathbb{R} \times [0, 1]$:

- > Vertices: $P = \{(x_i, u_i)\}_{i \ge 1}$
- > Hyperedges: $\mathcal{P}' = \{(y_i, v_i)\}_{i \ge 1}$
- A vertex-hyperedge pair $\{(x, u), (y, v)\} \in \mathcal{P} \times \mathcal{P}'$ is connected iff

 $|\mathbf{x} - \mathbf{y}| \leq eta \, \mathbf{u}^{-\gamma} \, \mathbf{v}^{-\gamma'} \qquad eta > \mathbf{0}, \ \gamma, \gamma' \in (\mathbf{0}, \mathbf{1})$

Figure 3: Connection condition

• Result: preferential attachment + spatially induced clustering.

Figure 1: Collaboration of scientists in the field of engineering

- Idea: use simplicial complexes where each interaction is represented by a simplex.
- Explaining simplex counts in various dimensions describes high-level community structures.

Figure 4: Hypergraph generated by the random connection hypergraph model. **Left**: Fixed vertex positions. **Right**: Force directed layout.

Stable Distribution of Simplex Counts

Theorem (Stable limit for simplex counts). Let S_{n.m} be the m-simplex count in the window [0, n]. If $\gamma > 1/2$, and $\gamma' < 1/(2m + 1)$, then

 $n^{-\gamma}(S_{n,m} - \mathbb{E}[S_{n,m}]) \xrightarrow[n\uparrow\infty]{d} S(1/\gamma).$

- For $\gamma = 0.75$, $\gamma' = 0.1$ we simulated 100 networks of size $n = 10^5$.
- The Q-Q plot for the triangle counts shows a fat right tail of the distribution.

Hypothesis Test

- Model parameters β , γ , γ' are fitted to the empirical dataset.
- Parameters of a stable distribution are fitted to the simplex counts generated by the model.
- Hypothesis test is performed to determine if the model captures the triangle count of the dataset.

Figure 2: Left: stable distribution of the triangle counts. Right: Q-Q plot with the fitted normal distribution.

Figure 5: Left: Sample network with the fitted model parameters. **Right**: Hypothesis test for the triangle count.

This work was supported by the Danish Data Science Academy, which is funded by

the Novo Nordisk Foundation (NNF21SA0069429) and VILLUM FONDEN (40516).